A366728 2-tone chromatic number of the square of a cycle with n vertices.
6, 8, 10, 9, 7, 8, 8, 8, 8, 7, 8, 7, 7, 7, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 3
Keywords
Examples
The colorings for (broken) cycles with orders 7 through 13 are shown below. -12-34-56-71-23-45-67- -12-34-56-78-13-24-57-68- -12-34-56-17-23-45-16-37-58- -12-34-56-71-23-68-15-24-38-57- -12-34-56-17-24-36-58-14-26-38-57- -12-34-56-71-32-54-16-37-52-14-36-57- -12-34-56-71-32-54-16-37-58-14-32-57-68-
Links
- Allan Bickle, 2-Tone coloring of joins and products of graphs, Congr. Numer. 217 (2013), 171-190.
- Allan Bickle, 2-Tone Coloring of Chordal and Outerplanar Graphs, Australas. J. Combin. 87 1 (2023) 182-197.
- Allan Bickle and B. Phillips, t-Tone Colorings of Graphs, Utilitas Math, 106 (2018) 85-102.
- D. W. Cranston and H. LaFayette, The t-tone chromatic number of classes of sparse graphs, Australas. J. Combin. 86 (2023), 458-476.
- N. Fonger, J. Goss, B. Phillips, and C. Segroves, Math 6450: Final Report, Group #2 Study Project, 2009.
Crossrefs
Formula
a(n) = 7 for all n>17.
Comments