This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366738 #8 Nov 06 2023 22:58:42 %S A366738 0,0,1,2,5,9,17,28,46,72,111,166,243,352,500,704,973,1341,1819,2459, %T A366738 3277,4363,5735,7529,9779,12685,16301,20929,26638,33878,42778,53942, %U A366738 67583,84600,105270,130853,161835,199896,245788,301890,369208,451046,549002,667370 %N A366738 Number of semi-sums of integer partitions of n. %C A366738 We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums. %e A366738 The partitions of 6 and their a(6) = 17 semi-sums: %e A366738 (6) -> %e A366738 (51) -> 6 %e A366738 (42) -> 6 %e A366738 (411) -> 2,5 %e A366738 (33) -> 6 %e A366738 (321) -> 3,4,5 %e A366738 (3111) -> 2,4 %e A366738 (222) -> 4 %e A366738 (2211) -> 2,3,4 %e A366738 (21111) -> 2,3 %e A366738 (111111) -> 2 %t A366738 Table[Total[Length[Union[Total/@Subsets[#,{2}]]]&/@IntegerPartitions[n]],{n,0,15}] %Y A366738 The non-binary version is A304792. %Y A366738 The strict non-binary version is A365925. %Y A366738 For prime indices instead of partitions we have A366739. %Y A366738 The strict case is A366741. %Y A366738 A000041 counts integer partitions, strict A000009. %Y A366738 A001358 lists semiprimes, squarefree A006881, conjugate A065119. %Y A366738 A126796 counts complete partitions, ranks A325781, strict A188431. %Y A366738 A276024 counts positive subset-sums of partitions, strict A284640. %Y A366738 A365924 counts incomplete partitions, ranks A365830, strict A365831. %Y A366738 Cf. A008967, A046663, A117855, A122768, A238628, A299701, A365543, A365544, A366753, A367095. %K A366738 nonn %O A366738 0,4 %A A366738 _Gus Wiseman_, Nov 06 2023 %E A366738 More terms from _Alois P. Heinz_, Nov 06 2023