This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366740 #9 Nov 06 2023 22:58:49 %S A366740 90,180,210,270,360,420,450,462,525,540,550,630,720,810,840,858,900, %T A366740 910,924,990,1050,1080,1100,1155,1170,1260,1326,1350,1386,1440,1470, %U A366740 1530,1575,1620,1650,1666,1680,1710,1716,1800,1820,1848,1870,1890,1911,1938,1980 %N A366740 Positive integers whose semiprime divisors do not all have different Heinz weights (sum of prime indices, A056239). %C A366740 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A366740 From _Robert Israel_, Nov 06 2023: (Start) %C A366740 Positive integers divisible by the product of four primes, prime(i)*prime(j)*prime(k)*prime(l), i < j <= k < l, with i + l = j + k. %C A366740 All positive multiples of terms are terms. (End) %F A366740 These are numbers k such that A086971(k) > A366739(k). %e A366740 The semiprime divisors of 90 are (6,9,10,15), with prime indices ({1,2},{2,2},{1,3},{2,3}) with sums (3,4,4,5), which are not all different, so 90 is in the sequence. %e A366740 The terms together with their prime indices begin: %e A366740 90: {1,2,2,3} %e A366740 180: {1,1,2,2,3} %e A366740 210: {1,2,3,4} %e A366740 270: {1,2,2,2,3} %e A366740 360: {1,1,1,2,2,3} %e A366740 420: {1,1,2,3,4} %e A366740 450: {1,2,2,3,3} %e A366740 462: {1,2,4,5} %e A366740 525: {2,3,3,4} %e A366740 540: {1,1,2,2,2,3} %e A366740 550: {1,3,3,5} %e A366740 630: {1,2,2,3,4} %e A366740 720: {1,1,1,1,2,2,3} %p A366740 N:= 10^4: # for terms <= N %p A366740 P:= select(isprime, [$1..N]): nP:= nops(P): %p A366740 R:= {}: %p A366740 for i from 1 while P[i]*P[i+1]^2*P[i+2] < N do %p A366740 for j from i+1 while P[i]*P[j]^2 * P[j+1] < N do %p A366740 for k from j do %p A366740 l:= j+k-i; %p A366740 if l <= k or l > nP then break fi; %p A366740 v:= P[i]*P[j]*P[k]*P[l]; %p A366740 if v <= N then %p A366740 R:= R union {seq(t,t=v..N,v)}; %p A366740 fi %p A366740 od od od: %p A366740 sort(convert(R,list)); # _Robert Israel_, Nov 06 2023 %t A366740 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A366740 Select[Range[1000],!UnsameQ@@Total/@Union[Subsets[prix[#],{2}]]&] %Y A366740 The complement is too dense. %Y A366740 For all divisors instead of just semiprimes we have A299729, strict A316402. %Y A366740 Distinct semi-sums of prime indices are counted by A366739. %Y A366740 Partitions of this type are counted by A366753, non-binary A366754. %Y A366740 A001222 counts prime factors (or prime indices), distinct A001221. %Y A366740 A001358 lists semiprimes, squarefree A006881, conjugate A065119. %Y A366740 A056239 adds up prime indices, row sums of A112798. %Y A366740 A299701 counts distinct subset-sums of prime indices, positive A304793. %Y A366740 A299702 ranks knapsack partitions, counted by A108917, strict A275972. %Y A366740 Semiprime divisors are listed by A367096 and have: %Y A366740 - square count: A056170 %Y A366740 - sum: A076290 %Y A366740 - squarefree count: A079275 %Y A366740 - count: A086971 %Y A366740 - firsts: A220264 %Y A366740 Cf. A000720, A001248, A008967, A365541, A365920, A366737, A366738, A366741, A367093, A367095, A367097. %K A366740 nonn %O A366740 1,1 %A A366740 _Gus Wiseman_, Nov 05 2023