cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366740 Positive integers whose semiprime divisors do not all have different Heinz weights (sum of prime indices, A056239).

This page as a plain text file.
%I A366740 #9 Nov 06 2023 22:58:49
%S A366740 90,180,210,270,360,420,450,462,525,540,550,630,720,810,840,858,900,
%T A366740 910,924,990,1050,1080,1100,1155,1170,1260,1326,1350,1386,1440,1470,
%U A366740 1530,1575,1620,1650,1666,1680,1710,1716,1800,1820,1848,1870,1890,1911,1938,1980
%N A366740 Positive integers whose semiprime divisors do not all have different Heinz weights (sum of prime indices, A056239).
%C A366740 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A366740 From _Robert Israel_, Nov 06 2023: (Start)
%C A366740 Positive integers divisible by the product of four primes, prime(i)*prime(j)*prime(k)*prime(l), i < j <= k < l, with i + l = j + k.
%C A366740 All positive multiples of terms are terms. (End)
%F A366740 These are numbers k such that A086971(k) > A366739(k).
%e A366740 The semiprime divisors of 90 are (6,9,10,15), with prime indices ({1,2},{2,2},{1,3},{2,3}) with sums (3,4,4,5), which are not all different, so 90 is in the sequence.
%e A366740 The terms together with their prime indices begin:
%e A366740     90: {1,2,2,3}
%e A366740    180: {1,1,2,2,3}
%e A366740    210: {1,2,3,4}
%e A366740    270: {1,2,2,2,3}
%e A366740    360: {1,1,1,2,2,3}
%e A366740    420: {1,1,2,3,4}
%e A366740    450: {1,2,2,3,3}
%e A366740    462: {1,2,4,5}
%e A366740    525: {2,3,3,4}
%e A366740    540: {1,1,2,2,2,3}
%e A366740    550: {1,3,3,5}
%e A366740    630: {1,2,2,3,4}
%e A366740    720: {1,1,1,1,2,2,3}
%p A366740 N:= 10^4: # for terms <= N
%p A366740 P:= select(isprime, [$1..N]): nP:= nops(P):
%p A366740 R:= {}:
%p A366740 for i from 1 while P[i]*P[i+1]^2*P[i+2] < N do
%p A366740   for j from i+1 while P[i]*P[j]^2 * P[j+1] < N do
%p A366740     for k from j do
%p A366740       l:= j+k-i;
%p A366740       if l <= k or l > nP then break fi;
%p A366740       v:= P[i]*P[j]*P[k]*P[l];
%p A366740       if v <= N then
%p A366740         R:= R union {seq(t,t=v..N,v)};
%p A366740       fi
%p A366740 od od od:
%p A366740 sort(convert(R,list)); # _Robert Israel_, Nov 06 2023
%t A366740 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A366740 Select[Range[1000],!UnsameQ@@Total/@Union[Subsets[prix[#],{2}]]&]
%Y A366740 The complement is too dense.
%Y A366740 For all divisors instead of just semiprimes we have A299729, strict A316402.
%Y A366740 Distinct semi-sums of prime indices are counted by A366739.
%Y A366740 Partitions of this type are counted by A366753, non-binary A366754.
%Y A366740 A001222 counts prime factors (or prime indices), distinct A001221.
%Y A366740 A001358 lists semiprimes, squarefree A006881, conjugate A065119.
%Y A366740 A056239 adds up prime indices, row sums of A112798.
%Y A366740 A299701 counts distinct subset-sums of prime indices, positive A304793.
%Y A366740 A299702 ranks knapsack partitions, counted by A108917, strict A275972.
%Y A366740 Semiprime divisors are listed by A367096 and have:
%Y A366740 - square count: A056170
%Y A366740 - sum: A076290
%Y A366740 - squarefree count: A079275
%Y A366740 - count: A086971
%Y A366740 - firsts: A220264
%Y A366740 Cf. A000720, A001248, A008967, A365541, A365920, A366737, A366738, A366741, A367093, A367095, A367097.
%K A366740 nonn
%O A366740 1,1
%A A366740 _Gus Wiseman_, Nov 05 2023