This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366741 #6 Nov 07 2023 08:24:54 %S A366741 0,0,0,1,1,2,5,6,9,13,21,26,37,48,63,86,108,139,175,223,274,350,422, %T A366741 527,638,783,939,1146,1371,1648,1957,2341,2770,3285,3867,4552,5353, %U A366741 6262,7314,8529,9924,11511,13354,15423,17825,20529,23628,27116,31139,35615 %N A366741 Number of semi-sums of strict integer partitions of n. %C A366741 We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums. %e A366741 The strict partitions of 9 and their a(9) = 13 semi-sums: %e A366741 (9) -> %e A366741 (81) -> 9 %e A366741 (72) -> 9 %e A366741 (63) -> 9 %e A366741 (621) -> 3,7,8 %e A366741 (54) -> 9 %e A366741 (531) -> 4,6,8 %e A366741 (432) -> 5,6,7 %t A366741 Table[Total[Length[Union[Total/@Subsets[#, {2}]]]&/@Select[IntegerPartitions[n], UnsameQ@@#&]], {n,0,30}] %Y A366741 The non-strict non-binary version is A304792. %Y A366741 The non-binary version is A365925. %Y A366741 The non-strict version is A366738. %Y A366741 A000041 counts integer partitions, strict A000009. %Y A366741 A001358 lists semiprimes, squarefree A006881, conjugate A065119. %Y A366741 A126796 counts complete partitions, ranks A325781, strict A188431. %Y A366741 A276024 counts positive subset-sums of partitions, strict A284640. %Y A366741 A365543 counts partitions with a subset summing to k, complement A046663. %Y A366741 A365661 counts strict partitions w/ subset summing to k, complement A365663. %Y A366741 A365924 counts incomplete partitions, ranks A365830, strict A365831. %Y A366741 A366739 counts semi-sums of prime indices, firsts A367097. %Y A366741 Cf. A008967, A122768, A299701, A364272, A364350, A365541, A365832, A366753. %K A366741 nonn %O A366741 0,6 %A A366741 _Gus Wiseman_, Nov 05 2023