cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366743 The sum of infinitary divisors of the least coreful infinitary divisor of n.

This page as a plain text file.
%I A366743 #8 Oct 21 2023 01:50:42
%S A366743 1,3,4,5,6,12,8,3,10,18,12,20,14,24,24,17,18,30,20,30,32,36,24,12,26,
%T A366743 42,4,40,30,72,32,3,48,54,48,50,38,60,56,18,42,96,44,60,60,72,48,68,
%U A366743 50,78,72,70,54,12,72,24,80,90,60,120,62,96,80,5,84,144,68,90
%N A366743 The sum of infinitary divisors of the least coreful infinitary divisor of n.
%C A366743 Also, the sum of unitary divisors of the least coreful infinitary divisor of n, A365296(n), since A365296(n) is a term of A138302, which is also the sequence of numbers whose sets of unitary divisors (A077610) and infinitary divisors (A077609) coincide.
%C A366743 The number of infinitary divisors of the least coreful infinitary divisor of n is A034444(n).
%H A366743 Amiram Eldar, <a href="/A366743/b366743.txt">Table of n, a(n) for n = 1..10000</a>
%F A366743 a(n) = A034448(A365296(n)).
%F A366743 a(n) = A049417(A365296(n)).
%F A366743 a(n) = A000203(n) if and only if n is squarefree (A005117).
%F A366743 Multiplicative with a(p^e) = p^A006519(e) + 1.
%F A366743 Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1 - 1/(p+1) + Sum_{e>=1} 1/p^f(e)-1/p^(f(e)+1)) = 0.61865169..., where f(k) = 2*k - A006519(k) = A339597(k-1).
%t A366743 f[p_, e_] := p^(2^IntegerExponent[e, 2]) + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A366743 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^(2^valuation(f[i, 2], 2)));}
%Y A366743 Cf. A000203, A005117, A006519, A034444, A034448, A049417, A077609, A077610, A138302, A339597, A365296, A366742, A366744.
%K A366743 nonn,easy,mult
%O A366743 1,2
%A A366743 _Amiram Eldar_, Oct 19 2023