cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366744 The sum of divisors of the least coreful infinitary divisor of n.

This page as a plain text file.
%I A366744 #9 Oct 21 2023 01:50:25
%S A366744 1,3,4,7,6,12,8,3,13,18,12,28,14,24,24,31,18,39,20,42,32,36,24,12,31,
%T A366744 42,4,56,30,72,32,3,48,54,48,91,38,60,56,18,42,96,44,84,78,72,48,124,
%U A366744 57,93,72,98,54,12,72,24,80,90,60,168,62,96,104,7,84,144,68
%N A366744 The sum of divisors of the least coreful infinitary divisor of n.
%C A366744 The number of divisors of the least coreful infinitary divisor of n is A366742(n).
%H A366744 Amiram Eldar, <a href="/A366744/b366744.txt">Table of n, a(n) for n = 1..10000</a>
%F A366744 a(n) = A000203(A365296(n)).
%F A366744 a(n) = A000203(n) if and only if n is in A138302.
%F A366744 Multiplicative with a(p^e) = (p^(A006519(e)+1) - 1)/(p - 1).
%F A366744 Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1 - p/(p^2-1) + Sum_{e>=1} 1/p^f(e)) = 0.696427154..., where f(k) = 2*k - A006519(k) = A339597(k-1).
%t A366744 f[p_, e_] := (p^(2^IntegerExponent[e, 2]+1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A366744 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(2^valuation(f[i, 2], 2)+1) - 1)/(f[i, 1] -1 ));}
%Y A366744 Cf. A000203, A006519, A138302, A339597, A365296, A366742, A366743.
%K A366744 nonn,easy,mult
%O A366744 1,2
%A A366744 _Amiram Eldar_, Oct 19 2023