This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366747 #10 Nov 12 2023 22:01:44 %S A366747 0,0,1,1,1,1,1,1,1,1,1,2,1,1,1,2,2,1,1,1,2,3,1,1,1,1,1,2,3,1,2,2,1,1, %T A366747 1,1,2,3,1,3,2,1,2,2,1,1,1,2,3,1,3,2,2,3,2,1,3,1,1,1,1,2,3,1,3,2,3,3, %U A366747 2,1,2,4,1,2,2,1,1,1,2,3,1,3,2,3,3,2 %N A366747 Irregular triangular array, read by rows: T(n,k) = out-degree of k-th vertex in the distance graph of the strict partitions of n, where the parts of partitions and the list of partitions are in reverse-lexicographic order (Mathematica order). %C A366747 See A366156 for the distance function d and A000097 for the distance graph. %C A366747 Regarding reverse lexicographic order (Mathematica order, also called canonical order; see A080577). %e A366747 Triangle begins: %e A366747 0 %e A366747 0 %e A366747 1 %e A366747 1 %e A366747 1 1 %e A366747 1 1 1 %e A366747 1 1 2 1 %e A366747 1 1 2 2 1 %e A366747 1 1 2 3 1 1 1 %e A366747 1 1 2 3 1 2 2 1 1 %e A366747 1 1 2 3 1 3 2 1 2 2 1 %e A366747 1 1 2 3 1 3 2 2 3 2 1 3 1 1 %e A366747 1 1 2 3 1 3 2 3 3 2 1 2 4 1 2 2 1 %e A366747 Enumerate the 6 strict partitions (= vertices) of 8 as follows: %e A366747 1: 8 %e A366747 2: 7,1 %e A366747 3: 6,2 %e A366747 4: 5,3 %e A366747 5: 5,2,1 %e A366747 6: 4,3,1 %e A366747 Call q a neighbor of p if d(p,q)=2. %e A366747 The set of neighbors for vertex k, for k = 1..6, is given by %e A366747 vertex 1: {2} (so that vertex 1 has out-degree 1) %e A366747 vertex 2: {1,3} (out-degree 1) %e A366747 vertex 3: {2,4,5} (out-degree 2) %e A366747 vertex 4: {3,5,6} (out-degree 2) %e A366747 vertex 5: {3,4,6} (out degree 1) %e A366747 vertex 6: {4,5} (out degree 0), %e A366747 so that row 8 is 1,1,2,2,1. %e A366747 (Out-degrees of 0 are excluded except for n = 1 and n = 2.) %t A366747 c[n_] := PartitionsQ[n]; q[n_, k_] := q[n, k] = %t A366747 Select[IntegerPartitions[n], DeleteDuplicates[#] == # &][[k]]; %t A366747 r[n_, k_] := r[n, k] = Join[q[n, k], ConstantArray[0, n - Length[q[n, k]]]]; %t A366747 d[u_, v_] := Total[Abs[u - v]]; %t A366747 s[n_, k_] := Select[Range[c[n]], d[r[n, k], r[n, #]] == 2 &]; %t A366747 t = Table[s[n, k], {n, 1, 12}, {k, 1, c[n]}]; %t A366747 s1[n_, k_] := Length[Select[s[n, k], # > k &]]; %t A366747 t1 = Join[{0, 0}, Table[s1[n, k], {n, 1, 26}, {k, 1, c[n] - 1}]]; %t A366747 TableForm[t1] (* array *) %t A366747 Flatten[t1] (* sequence *) %Y A366747 Cf. A000009, A096778 (row sums), A366597. %K A366747 nonn,tabf %O A366747 1,12 %A A366747 _Clark Kimberling_, Oct 25 2023