This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366748 #9 Oct 23 2023 21:43:07 %S A366748 1,12,70,90,112,144,286,325,462,520,525,594,646,675,832,840,1045,1080, %T A366748 1326,1334,1344,1666,1672,1728,1900,2142,2145,2294,2465,2622,2695, %U A366748 2754,3040,3432,3465,3509,3526,3900,3944,4186,4255,4312,4455,4845,4864,4900,4982 %N A366748 Numbers k such that (sum of odd prime indices of k) = (sum of even prime indices of k). %C A366748 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %F A366748 These are numbers k such that A346697(k) = A346698(k). %e A366748 The terms together with their prime indices begin: %e A366748 1: {} %e A366748 12: {1,1,2} %e A366748 70: {1,3,4} %e A366748 90: {1,2,2,3} %e A366748 112: {1,1,1,1,4} %e A366748 144: {1,1,1,1,2,2} %e A366748 286: {1,5,6} %e A366748 325: {3,3,6} %e A366748 462: {1,2,4,5} %e A366748 520: {1,1,1,3,6} %e A366748 525: {2,3,3,4} %e A366748 594: {1,2,2,2,5} %e A366748 646: {1,7,8} %e A366748 675: {2,2,2,3,3} %e A366748 832: {1,1,1,1,1,1,6} %e A366748 840: {1,1,1,2,3,4} %e A366748 For example, 525 has prime indices {2,3,3,4}, and 3+3 = 2+4, so 525 is in the sequence. %t A366748 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A366748 Select[Range[1000], Total[Select[prix[#],OddQ]]==Total[Select[prix[#],EvenQ]]&] %Y A366748 For prime factors instead of indices we have A019507. %Y A366748 Partitions of this type are counted by A239261. %Y A366748 For count instead of sum we have A325698, distinct A325700. %Y A366748 The LHS (sum of odd prime indices) is A366528, triangle A113685. %Y A366748 The RHS (sum of even prime indices) is A366531, triangle A113686. %Y A366748 These are the positions of zeros in A366749. %Y A366748 A000009 counts partitions into odd parts, ranked by A066208. %Y A366748 A035363 counts partitions into even parts, ranked by A066207. %Y A366748 A112798 lists prime indices, reverse A296150, length A001222, sum A056239. %Y A366748 A257991 counts odd prime indices, even A257992. %Y A366748 A300061 lists numbers with even sum of prime indices, odd A300063. %Y A366748 Cf. A028260, A045931, A106529, A239241, A241638, A365067, A366533. %K A366748 nonn %O A366748 1,2 %A A366748 _Gus Wiseman_, Oct 23 2023