This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366749 #8 Oct 24 2023 18:46:45 %S A366749 0,-1,2,-2,-3,1,4,-3,4,-4,-5,0,6,3,-1,-4,-7,3,8,-5,6,-6,-9,-1,-6,5,6, %T A366749 2,10,-2,-11,-5,-3,-8,1,2,12,7,8,-6,-13,5,14,-7,1,-10,-15,-2,8,-7,-5, %U A366749 4,16,5,-8,1,10,9,-17,-3,18,-12,8,-6,3,-4,-19,-9,-7,0 %N A366749 Self-signed alternating sum of the prime indices of n. %C A366749 We define the self-signed alternating sum of a multiset y to be Sum_{k in y} k*(-1)^k. %C A366749 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %F A366749 a(n) = Sum_{k in A112798(n)} k*(-1)^k. %F A366749 a(n) = A366531(n) - A366528(n). %t A366749 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A366749 asum[y_]:=Sum[x*(-1)^x,{x,y}]; %t A366749 Table[asum[prix[n]],{n,100}] %Y A366749 With summands of 2^(n-1) we get A048675. %Y A366749 With summands of (-1)^k we get A195017. %Y A366749 The version for alternating prime indices is A346697 - A346698 = A316524. %Y A366749 Positions of zeros are A366748, counted by A239261. %Y A366749 A112798 lists prime indices, length A001222, sum A056239, reverse A296150. %Y A366749 A300061 lists numbers with even sum of prime indices, odd A300063. %Y A366749 A366528 adds up odd prime indices, counted by A113685. %Y A366749 A366531 adds up even prime indices, counted by A113686. %Y A366749 Cf. A000720, A019507, A045931, A055396, A061395, A325698, A325700, A366533. %K A366749 sign %O A366749 1,3 %A A366749 _Gus Wiseman_, Oct 23 2023