cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366750 Number of strict integer partitions of n into odd parts with a common divisor > 1.

This page as a plain text file.
%I A366750 #12 Nov 03 2023 11:21:27
%S A366750 0,0,0,1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,1,1,0,1,2,1,0,2,1,1,3,1,0,2,
%T A366750 0,1,3,1,0,3,2,1,4,1,1,5,0,1,5,1,2,5,1,1,5,2,2,6,0,1,9,1,0,9,0,3,9,1,
%U A366750 1,9,5,1,11,1,0,15,1,2,13,1,5,14,0,1,18
%N A366750 Number of strict integer partitions of n into odd parts with a common divisor > 1.
%e A366750 The a(n) partitions for n = 3, 24, 30, 42, 45, 57, 60:
%e A366750   (3)  (15,9)  (21,9)  (33,9)   (45)       (57)       (51,9)
%e A366750        (21,3)  (25,5)  (35,7)   (33,9,3)   (45,9,3)   (55,5)
%e A366750                (27,3)  (39,3)   (21,15,9)  (27,21,9)  (57,3)
%e A366750                        (27,15)  (25,15,5)  (33,15,9)  (33,27)
%e A366750                                 (27,15,3)  (33,21,3)  (35,25)
%e A366750                                            (39,15,3)  (39,21)
%e A366750                                                       (45,15)
%e A366750                                                       (27,21,9,3)
%e A366750                                                       (33,15,9,3)
%t A366750 Table[Length[Select[IntegerPartitions[n], And@@OddQ/@#&&UnsameQ@@#&&GCD@@#>1&]], {n,0,30}]
%o A366750 (Python)
%o A366750 from math import gcd
%o A366750 from sympy.utilities.iterables import partitions
%o A366750 def A366750(n): return sum(1 for p in partitions(n) if all(d==1 for d in p.values()) and all(d&1 for d in p) and gcd(*p)>1) # _Chai Wah Wu_, Nov 02 2023
%Y A366750 This is the case of A000700 with a common divisor.
%Y A366750 Including evens gives A303280.
%Y A366750 The complement is counted by A366844, non-strict version A366843.
%Y A366750 The non-strict version is A366852, with evens A018783.
%Y A366750 A000041 counts integer partitions, strict A000009 (also into odds).
%Y A366750 A051424 counts pairwise coprime partitions, for odd parts A366853.
%Y A366750 A113685 counts partitions by sum of odd parts, rank statistic A366528.
%Y A366750 A168532 counts partitions by gcd.
%Y A366750 Cf. A000837, A007360, A055922, A066208, A078374, A302697, A337485, A366842, A366845, A366848.
%K A366750 nonn
%O A366750 0,25
%A A366750 _Gus Wiseman_, Nov 01 2023
%E A366750 More terms from _Chai Wah Wu_, Nov 02 2023