This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366753 #7 Nov 08 2023 07:50:44 %S A366753 0,0,0,0,0,0,0,0,1,1,3,4,9,11,22,27,48,61,98,123,188,237,345,435,611, %T A366753 765,1046,1305,1741,2165,2840,3502,4527,5562,7083,8650,10908,13255, %U A366753 16545,20016,24763,29834,36587,43911,53514,63964,77445,92239,111015,131753 %N A366753 Number of integer partitions of n without all different sums of two-element submultisets. %e A366753 The two-element submultisets of y = {1,1,1,2,2,3} are {1,1}, {1,2}, {1,3}, {2,2}, {2,3}, with sums 2, 3, 4, 4, 5, which are not all different, so y is counted under a(10). %e A366753 The a(8) = 1 through a(13) = 11 partitions: %e A366753 (3221) (32211) (4321) (33221) (4332) (43321) %e A366753 (32221) (43211) (5331) (53221) %e A366753 (322111) (322211) (5421) (53311) %e A366753 (3221111) (43221) (54211) %e A366753 (322221) (332221) %e A366753 (332211) (432211) %e A366753 (432111) (3222211) %e A366753 (3222111) (3322111) %e A366753 (32211111) (4321111) %e A366753 (32221111) %e A366753 (322111111) %t A366753 Table[Length[Select[IntegerPartitions[n],!UnsameQ@@Total/@Union[Subsets[#,{2}]]&]],{n,0,30}] %Y A366753 Semiprime divisors are counted by A086971, distinct sums A366739. %Y A366753 The non-binary complement is A108917, strict A275972, ranks A299702. %Y A366753 These partitions have ranks A366740. %Y A366753 The non-binary version is A366754, strict A316402, ranks A299729. %Y A366753 A276024 counts positive subset-sums of partitions, strict A284640. %Y A366753 A304792 counts subset-sum of partitions, strict A365925. %Y A366753 A365543 counts partitions with a subset-sum k, complement A046663. %Y A366753 A365661 counts strict partitions with a subset-sum k, complement A365663. %Y A366753 A366738 counts semi-sums of partitions, strict A366741. %Y A366753 A367096 lists semiprime divisors, row sums A076290. %Y A366753 Cf. A002033, A001358, A006827, A008967, A122768, A126796, A365923, A365924, A367093, A367095. %K A366753 nonn %O A366753 0,11 %A A366753 _Gus Wiseman_, Nov 07 2023