This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366754 #8 Nov 08 2023 07:50:40 %S A366754 0,0,0,0,1,1,4,4,10,13,23,27,52,60,94,118,175,213,310,373,528,643,862, %T A366754 1044,1403,1699,2199,2676,3426,4131,5256,6295,7884,9479,11722,14047, %U A366754 17296,20623,25142,29942,36299,43081,51950,61439,73668,87040,103748,122149,145155,170487 %N A366754 Number of non-knapsack integer partitions of n. %C A366754 A multiset is non-knapsack if there exist two different submultisets with the same sum. %F A366754 a(n) = A000041(n) - A108917(n). %e A366754 The a(4) = 1 through a(9) = 13 partitions: %e A366754 (211) (2111) (321) (3211) (422) (3321) %e A366754 (2211) (22111) (431) (4221) %e A366754 (3111) (31111) (3221) (4311) %e A366754 (21111) (211111) (4211) (5211) %e A366754 (22211) (32211) %e A366754 (32111) (33111) %e A366754 (41111) (42111) %e A366754 (221111) (222111) %e A366754 (311111) (321111) %e A366754 (2111111) (411111) %e A366754 (2211111) %e A366754 (3111111) %e A366754 (21111111) %t A366754 Table[Length[Select[IntegerPartitions[n], !UnsameQ@@Total/@Union[Subsets[#]]&]], {n,0,15}] %Y A366754 The complement is counted by A108917, strict A275972, ranks A299702. %Y A366754 These partitions have ranks A299729. %Y A366754 The strict case is A316402. %Y A366754 The binary version is A366753, ranks A366740. %Y A366754 A000041 counts integer partitions, strict A000009. %Y A366754 A276024 counts positive subset-sums of partitions, strict A284640. %Y A366754 A304792 counts subset-sum of partitions, strict A365925. %Y A366754 A365543 counts partitions with subset-sum k, complement A046663. %Y A366754 A365661 counts strict partitions with subset-sum k, complement A365663. %Y A366754 A366738 counts semi-sums of partitions, strict A366741. %Y A366754 Cf. A002033, A006827, A122768, A126796, A238628, A365923, A365924, A367095. %K A366754 nonn %O A366754 0,7 %A A366754 _Gus Wiseman_, Nov 08 2023