cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366762 Numbers whose canonical prime factorization contains only exponents which are congruent to 1 modulo 3.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 48, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102
Offset: 1

Views

Author

Amiram Eldar, Oct 21 2023

Keywords

Comments

First differs from A274034 at n = 42, and from A197680 and A361177 at n = 84.
The asymptotic density of this sequence is zeta(3) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A002117 * A330523 = A253905 * A065465 = 0.644177671086029533405... .

Crossrefs

Similar sequences with exponents of a given form: A000290 (2*k), A268335 (2*k+1), A000578 (3*k), A182120 (3*k+2).

Programs

  • Mathematica
    q[n_] := AllTrue[FactorInteger[n][[;; , 2]], Mod[#, 3] == 1 &]; Select[Range[120], q]
  • PARI
    is(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 2]%3 != 1, return(0))); 1;}

Formula

Sum_{n>=1} 1/a(n)^s = zeta(3*s) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s)), for s > 1.