cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366765 The largest divisor of n that have no exponent 2 in their prime factorization.

This page as a plain text file.
%I A366765 #8 Oct 21 2023 11:37:54
%S A366765 1,2,3,2,5,6,7,8,3,10,11,6,13,14,15,16,17,6,19,10,21,22,23,24,5,26,27,
%T A366765 14,29,30,31,32,33,34,35,6,37,38,39,40,41,42,43,22,15,46,47,48,7,10,
%U A366765 51,26,53,54,55,56,57,58,59,30,61,62,21,64,65,66,67,34,69
%N A366765 The largest divisor of n that have no exponent 2 in their prime factorization.
%C A366765 The largest term of A337050 that divides n.
%C A366765 The number of these divisors is A366763(n), and their sum is A366764(n).
%H A366765 Amiram Eldar, <a href="/A366765/b366765.txt">Table of n, a(n) for n = 1..10000</a>
%F A366765 Multiplicative with a(p^e) = p if e <= 2 and p^e otherwise.
%F A366765 a(n) <= n, with equality if and only if n is in A337050.
%F A366765 Dirichlet g.f.: zeta(s-1) * Product_{p prime} (1 - 1/p^(2*s-2) + 1/p^(2*s-1) + 1/p^(3*s-3) - 1/p^(3*s-2)).
%F A366765 Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 - 1/p^2 + 2/p^3 - 1/p^4) = 0.83234421330425224469... .
%t A366765 f[p_, e_] := p^If[e < 3, 1, e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A366765 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1] ^ if(f[i, 2] < 3, 1, f[i, 2]));}
%Y A366765 Cf. A337050, A366763, A366764.
%Y A366765 Similar sequences: A055231, A057521, A008833, A350390.
%K A366765 nonn,easy,mult
%O A366765 1,2
%A A366765 _Amiram Eldar_, Oct 21 2023