cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366766 Array read by antidiagonals, where each row is the counting sequence of a certain type of free polyominoids (see comments).

This page as a plain text file.
%I A366766 #18 Oct 30 2023 15:33:19
%S A366766 1,0,1,0,1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,1,1,0,1,0,1,3,2,1,0,1,0,1,7,5,
%T A366766 0,1,0,1,0,1,20,16,0,1,1,0,1,0,1,60,55,0,2,1,1,0,1,0,1,204,222,0,5,2,
%U A366766 2,1,0,1,0,1,702,950,0,12,5,5,0,1
%N A366766 Array read by antidiagonals, where each row is the counting sequence of a certain type of free polyominoids (see comments).
%C A366766 A (D,d)-polyominoid is a connected set of d-dimensional unit cubes (cells) with integer coordinates in D-dimensional space. For normal polyominoids, two cells are connected if they share a (d-1)-dimensional facet, but here we allow connections where the cells share a lower-dimensional face.
%C A366766 Each row is the counting sequence (by number of cells) of (D,d)-polyominoids with certain restrictions on the allowed connections between cells. Two cells have a connection of type (g,h) if they intersect in a (d-g)-dimensional unit cube and extend in d-h common dimensions. For example, d-dimensional polyominoes use connections of type (1,0), polyplets use connections of types (1,0) (edge connections) and (2,0) (corner connections), normal (3,2)-polyominoids use connections of types (1,0) ("soft" connections) and (1,1) ("hard" connections), hard polyominoids use connections of type (1,1).
%C A366766 Each row corresponds to a triple (D,d,C), where 1 <= d <= D and C is a set of pairs (g,h) with 1 <= g <= d and 0 <= h <= min(g, D-d). The k-th term of that row is the number of free k-celled (D,d)-polyominoids with connections of the types in C. Connections of types not in C are permitted, but the polyominoids must be connected through the specified connections only. For example, polyominoes may have cells that intersect in a point (g = 2) and hard polyominoids can have soft connections (h = 0) that are not needed to keep the polyominoids connected.
%C A366766 The rows are sorted first by D, then by d, and finally by a binary vector indicating which types of connections are allowed, where the connection types (g,h) are sorted lexicographically. (See table in cross-references.)
%C A366766 For each pair (D,d), the first row is 1, 0, 0, ..., corresponding to (D,d,{}) (no connections allowed).
%C A366766 The number of rows corresponding to given values of D and d is 2^((d+1)*(d+2)/2-1) if 2*d <= D and 2^((D-d+1)*(3*d-D+2)/2-1) otherwise.
%H A366766 Pontus von Brömssen, <a href="/A366766/b366766.txt">Table of n, a(n) for n = 1..210</a> (first 20 antidiagonals).
%H A366766 Pontus von Brömssen, <a href="/A366766/a366766.py.txt">Python programs that relate row numbers and parameter sets</a>.
%H A366766 Wikipedia, <a href="https://en.wikipedia.org/wiki/Polyominoid">Polyominoid</a>.
%H A366766 <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a>.
%e A366766 Array begins:
%e A366766   n\k| 1  2  3  4  5   6    7     8      9     10      11       12
%e A366766   ---+------------------------------------------------------------
%e A366766    1 | 1  0  0  0  0   0    0     0      0      0       0        0
%e A366766    2 | 1  1  1  1  1   1    1     1      1      1       1        1
%e A366766    3 | 1  0  0  0  0   0    0     0      0      0       0        0
%e A366766    4 | 1  1  1  1  1   1    1     1      1      1       1        1
%e A366766    5 | 1  1  3  7 20  60  204   702   2526   9180   33989   126713
%e A366766    6 | 1  2  5 16 55 222  950  4265  19591  91678  434005  2073783
%e A366766    7 | 1  0  0  0  0   0    0     0      0      0       0        0
%e A366766    8 | 1  1  2  5 12  35  108   369   1285   4655   17073    63600
%e A366766    9 | 1  1  2  5 12  35  108   369   1285   4655   17073    63600
%e A366766   10 | 1  2  5 22 94 524 3031 18770 118133 758381 4915652 32149296
%e A366766   11 | 1  0  0  0  0   0    0     0      0      0       0        0
%e A366766   12 | 1  1  1  1  1   1    1     1      1      1       1        1
%Y A366766 Cf. A366767 (fixed), A366768.
%Y A366766 The following table lists some sequences that are rows of the array, together with the corresponding values of D, d, and C. Some sequences occur in more than one row. Notation used in the table:
%Y A366766   X: Allowed connection.
%Y A366766   -: Not allowed connection (but may occur "by accident" as long as it is not needed for connectedness).
%Y A366766   .: Not applicable for (D,d) in this row.
%Y A366766   !: d < D and all connections have h = 0, so these polyominoids live in d < D dimensions only.
%Y A366766   *: Whether a connection of type (g,h) is allowed or not is independent of h.
%Y A366766       |   |   | connections  |
%Y A366766       |   |   | g:1122233334 |
%Y A366766     n | D | d | h:0101201230 | sequence
%Y A366766   ----+---+---+--------------+---------
%Y A366766     1 | 1 | 1 | * -......... | A063524
%Y A366766     2 | 1 | 1 | * X......... | A000012
%Y A366766     3 |!2 | 1 | * --........ | A063524
%Y A366766     4 |!2 | 1 |   X-........ | A000012
%Y A366766     5 | 2 | 1 |   -X........ | A361625
%Y A366766     6 | 2 | 1 | * XX........ | A019988
%Y A366766     7 | 2 | 2 | * -.-....... | A063524
%Y A366766     8 | 2 | 2 | * X.-....... | A000105
%Y A366766     9 | 2 | 2 | * -.X....... | A000105
%Y A366766    10 | 2 | 2 | * X.X....... | A030222
%Y A366766    11 |!3 | 1 | * --........ | A063524
%Y A366766    12 |!3 | 1 |   X-........ | A000012
%Y A366766    13 | 3 | 1 |   -X........ | A365654
%Y A366766    14 | 3 | 1 | * XX........ | A365559
%Y A366766    15 |!3 | 2 | * ----...... | A063524
%Y A366766    16 |!3 | 2 |   X---...... | A000105
%Y A366766    17 | 3 | 2 |   -X--...... | A365654
%Y A366766    18 | 3 | 2 | * XX--...... | A075679
%Y A366766    19 |!3 | 2 |   --X-...... | A000105
%Y A366766    20 |!3 | 2 |   X-X-...... | A030222
%Y A366766    21 | 3 | 2 |   -XX-...... | A365995
%Y A366766    22 | 3 | 2 |   XXX-...... | A365997
%Y A366766    23 | 3 | 2 |   ---X...... | A365999
%Y A366766    24 | 3 | 2 |   X--X...... | A366001
%Y A366766    25 | 3 | 2 |   -X-X...... | A366003
%Y A366766    26 | 3 | 2 |   XX-X...... | A366005
%Y A366766    27 | 3 | 2 | * --XX...... | A365652
%Y A366766    28 | 3 | 2 |   X-XX...... | A366007
%Y A366766    29 | 3 | 2 |   -XXX...... | A366009
%Y A366766    30 | 3 | 2 | * XXXX...... | A365650
%Y A366766    31 | 3 | 3 | * -.-..-.... | A063524
%Y A366766    32 | 3 | 3 | * X.-..-.... | A038119
%Y A366766    33 | 3 | 3 | * -.X..-.... | A038173
%Y A366766    34 | 3 | 3 | * X.X..-.... | A268666
%Y A366766    35 | 3 | 3 | * -.-..X.... | A038171
%Y A366766    36 | 3 | 3 | * X.-..X.... | A363205
%Y A366766    37 | 3 | 3 | * -.X..X.... | A363206
%Y A366766    38 | 3 | 3 | * X.X..X.... | A272368
%Y A366766    39 |!4 | 1 | * --........ | A063524
%Y A366766    40 |!4 | 1 |   X-........ | A000012
%Y A366766    41 | 4 | 1 |   -X........ | A366340
%Y A366766    42 | 4 | 1 | * XX........ | A365561
%Y A366766    43 |!4 | 2 | * -----..... | A063524
%Y A366766    44 |!4 | 2 |   X----..... | A000105
%Y A366766    45 | 4 | 2 |   -X---..... | A366338
%Y A366766    46 | 4 | 2 | * XX---..... | A366334
%Y A366766    47 |!4 | 2 |   --X--..... | A000105
%Y A366766    48 |!4 | 2 |   X-X--..... | A030222
%Y A366766   ...
%Y A366766    75 |!4 | 3 | * ----.--... | A063524
%Y A366766    76 |!4 | 3 |   X---.--... | A038119
%Y A366766    77 | 4 | 3 |   -X--.--... | A366340
%Y A366766    78 | 4 | 3 | * XX--.--... | A366336
%Y A366766   ...
%Y A366766   139 | 4 | 4 | * -.-..-...- | A063524
%Y A366766   140 | 4 | 4 | * X.-..-...- | A068870
%Y A366766   141 | 4 | 4 | * -.X..-...- | A365356
%Y A366766   142 | 4 | 4 | * X.X..-...- | A365363
%Y A366766   143 | 4 | 4 | * -.-..X...- | A365354
%Y A366766   144 | 4 | 4 | * X.-..X...- | A365361
%Y A366766   145 | 4 | 4 | * -.X..X...- | A365358
%Y A366766   146 | 4 | 4 | * X.X..X...- | A365365
%Y A366766   147 | 4 | 4 | * -.-..-...X | A365353
%Y A366766   148 | 4 | 4 | * X.-..-...X | A365360
%Y A366766   149 | 4 | 4 | * -.X..-...X | A365357
%Y A366766   150 | 4 | 4 | * X.X..-...X | A365364
%Y A366766   151 | 4 | 4 | * -.-..X...X | A365355
%Y A366766   152 | 4 | 4 | * X.-..X...X | A365362
%Y A366766   153 | 4 | 4 | * -.X..X...X | A365359
%Y A366766   154 | 4 | 4 | * X.X..X...X | A365366
%Y A366766   155 |!5 | 1 | * --........ | A063524
%Y A366766   156 |!5 | 1 |   X-........ | A000012
%Y A366766   157 | 5 | 1 |   -X........ |
%Y A366766   158 | 5 | 1 | * XX........ | A365563
%K A366766 nonn,tabl
%O A366766 1,26
%A A366766 _Pontus von Brömssen_, Oct 22 2023