cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366767 Array read by antidiagonals, where each row is the counting sequence of a certain type of fixed polyominoids.

This page as a plain text file.
%I A366767 #9 Oct 30 2023 11:20:05
%S A366767 1,0,1,0,1,2,0,1,0,2,0,1,0,2,2,0,1,0,2,4,2,0,1,0,2,12,6,1,0,1,0,2,38,
%T A366767 22,0,1,0,1,0,2,126,88,0,2,1,0,1,0,2,432,372,0,6,2,1,0,1,0,2,1520,
%U A366767 1628,0,19,6,4,3,0,1,0,2,5450,7312,0,63,19,20,0,3
%N A366767 Array read by antidiagonals, where each row is the counting sequence of a certain type of fixed polyominoids.
%C A366767 See A366766 (corresponding array for free polyominoids) for details.
%H A366767 Pontus von Brömssen, <a href="https://oeis.org/A366766/a366766.py.txt">Python programs that relate row numbers and parameter sets</a>.
%H A366767 Wikipedia, <a href="https://en.wikipedia.org/wiki/Polyominoid">Polyominoid</a>.
%H A366767 <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a>.
%e A366767 Array begins:
%e A366767   n\k| 1  2  3   4   5    6     7      8      9      10       11        12
%e A366767   ---+--------------------------------------------------------------------
%e A366767    1 | 1  0  0   0   0    0     0      0      0       0        0         0
%e A366767    2 | 1  1  1   1   1    1     1      1      1       1        1         1
%e A366767    3 | 2  0  0   0   0    0     0      0      0       0        0         0
%e A366767    4 | 2  2  2   2   2    2     2      2      2       2        2         2
%e A366767    5 | 2  4 12  38 126  432  1520   5450  19820   72892   270536   1011722
%e A366767    6 | 2  6 22  88 372 1628  7312  33466 155446  730534  3466170  16576874
%e A366767    7 | 1  0  0   0   0    0     0      0      0       0        0         0
%e A366767    8 | 1  2  6  19  63  216   760   2725   9910   36446   135268    505861
%e A366767    9 | 1  2  6  19  63  216   760   2725   9910   36446   135268    505861
%e A366767   10 | 1  4 20 110 638 3832 23592 147941 940982 6053180 39299408 257105146
%e A366767   11 | 3  0  0   0   0    0     0      0      0       0        0         0
%e A366767   12 | 3  3  3   3   3    3     3      3      3       3        3         3
%Y A366767 Cf. A366766 (free), A366768.
%Y A366767 The following table lists some sequences that are rows of the array, together with the corresponding values of D, d, and C (see A366766). Some sequences occur in more than one row. Notation used in the table:
%Y A366767   X: Allowed connection.
%Y A366767   -: Not allowed connection (but may occur "by accident" as long as it is not needed for connectedness).
%Y A366767   .: Not applicable for (D,d) in this row.
%Y A366767   !: d < D and all connections have h = 0, so these polyominoids live in d < D dimensions only.
%Y A366767   *: Whether a connection of type (g,h) is allowed or not is independent of h.
%Y A366767       |   |   | connections |
%Y A366767       |   |   |  g:112223   |
%Y A366767     n | D | d |  h:010120   | sequence
%Y A366767   ----+---+---+-------------+----------
%Y A366767     1 | 1 | 1 |  * -.....   | A063524
%Y A366767     2 | 1 | 1 |  * X.....   | A000012
%Y A366767     3 |!2 | 1 |  * --....   | 2*A063524
%Y A366767     4 |!2 | 1 |    X-....   | 2*A000012
%Y A366767     5 | 2 | 1 |    -X....   | 2*A001168
%Y A366767     6 | 2 | 1 |  * XX....   | A096267
%Y A366767     7 | 2 | 2 |  * -.-...   | A063524
%Y A366767     8 | 2 | 2 |  * X.-...   | A001168
%Y A366767     9 | 2 | 2 |  * -.X...   | A001168
%Y A366767    10 | 2 | 2 |  * X.X...   | A006770
%Y A366767    11 |!3 | 1 |  * --....   | 3*A063524
%Y A366767    12 |!3 | 1 |    X-....   | 3*A000012
%Y A366767    13 | 3 | 1 |    -X....   | A365655
%Y A366767    14 | 3 | 1 |  * XX....   | A365560
%Y A366767    15 |!3 | 2 |  * ----..   | 3*A063524
%Y A366767    16 |!3 | 2 |    X---..   | 3*A001168
%Y A366767    17 | 3 | 2 |    -X--..   | A365655
%Y A366767    18 | 3 | 2 |  * XX--..   | A075678
%Y A366767    19 |!3 | 2 |    --X-..   | 3*A001168
%Y A366767    20 |!3 | 2 |    X-X-..   | 3*A006770
%Y A366767    21 | 3 | 2 |    -XX-..   | A365996
%Y A366767    22 | 3 | 2 |    XXX-..   | A365998
%Y A366767    23 | 3 | 2 |    ---X..   | A366000
%Y A366767    24 | 3 | 2 |    X--X..   | A366002
%Y A366767    25 | 3 | 2 |    -X-X..   | A366004
%Y A366767    26 | 3 | 2 |    XX-X..   | A366006
%Y A366767    27 | 3 | 2 |  * --XX..   | A365653
%Y A366767    28 | 3 | 2 |    X-XX..   | A366008
%Y A366767    29 | 3 | 2 |    -XXX..   | A366010
%Y A366767    30 | 3 | 2 |  * XXXX..   | A365651
%Y A366767    31 | 3 | 3 |  * -.-..-   | A063524
%Y A366767    32 | 3 | 3 |  * X.-..-   | A001931
%Y A366767    33 | 3 | 3 |  * -.X..-   | A039742
%Y A366767    34 | 3 | 3 |  * X.X..-   |
%Y A366767    35 | 3 | 3 |  * -.-..X   | A039741
%Y A366767    36 | 3 | 3 |  * X.-..X   |
%Y A366767    37 | 3 | 3 |  * -.X..X   |
%Y A366767    38 | 3 | 3 |  * X.X..X   |
%Y A366767    39 |!4 | 1 |  * --....   | 4*A063524
%Y A366767    40 |!4 | 1 |    X-....   | 4*A000012
%Y A366767    41 | 4 | 1 |    -X....   | A366341
%Y A366767    42 | 4 | 1 |  * XX....   | A365562
%Y A366767    43 |!4 | 2 |  * -----.   | 6*A063524
%Y A366767    44 |!4 | 2 |    X----.   | 6*A001168
%Y A366767    45 | 4 | 2 |    -X---.   | A366339
%Y A366767    46 | 4 | 2 |  * XX---.   | A366335
%Y A366767    47 |!4 | 2 |    --X--.   | 6*A001168
%Y A366767    48 |!4 | 2 |    X-X--.   | 6*A006770
%K A366767 nonn,tabl
%O A366767 1,6
%A A366767 _Pontus von Brömssen_, Oct 22 2023