cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366768 Array read by antidiagonals, where each row is the coordination sequence for the underlying graph of the polyominoids occurring in the corresponding row of A366766.

This page as a plain text file.
%I A366768 #13 Nov 03 2023 11:20:53
%S A366768 1,0,1,0,2,1,0,2,0,1,0,2,0,2,1,0,2,0,2,4,1,0,2,0,2,8,6,1,0,2,0,2,12,
%T A366768 16,0,1,0,2,0,2,16,24,0,4,1,0,2,0,2,20,32,0,8,4,1,0,2,0,2,24,40,0,12,
%U A366768 8,8,1,0,2,0,2,28,48,0,16,12,16,0,1
%N A366768 Array read by antidiagonals, where each row is the coordination sequence for the underlying graph of the polyominoids occurring in the corresponding row of A366766.
%C A366768 The underlying graph of a given type of polyominoids has all possible cells as nodes and edges between cells that are connected (respecting which types of connections are allowed). See A366766 for details on how the allowed connections are specified and on the ordering of the rows.
%H A366768 Pontus von Brömssen, <a href="https://oeis.org/A366766/a366766.py.txt">Python programs that relate row numbers and parameter sets</a>.
%H A366768 Wikipedia, <a href="https://en.wikipedia.org/wiki/Polyominoid">Polyominoid</a>.
%H A366768 <a href="/index/Con#coordination_sequences">Index entries for coordination sequences</a>.
%H A366768 <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a>.
%e A366768 Array begins:
%e A366768   n\k| 0  1  2   3   4   5   6   7   8   9   10   11
%e A366768   ---+----------------------------------------------
%e A366768    1 | 1  0  0   0   0   0   0   0   0   0    0    0
%e A366768    2 | 1  2  2   2   2   2   2   2   2   2    2    2
%e A366768    3 | 1  0  0   0   0   0   0   0   0   0    0    0
%e A366768    4 | 1  2  2   2   2   2   2   2   2   2    2    2
%e A366768    5 | 1  4  8  12  16  20  24  28  32  36   40   44
%e A366768    6 | 1  6 16  24  32  40  48  56  64  72   80   88
%e A366768    7 | 1  0  0   0   0   0   0   0   0   0    0    0
%e A366768    8 | 1  4  8  12  16  20  24  28  32  36   40   44
%e A366768    9 | 1  4  8  12  16  20  24  28  32  36   40   44
%e A366768   10 | 1  8 16  24  32  40  48  56  64  72   80   88
%e A366768   11 | 1  0  0   0   0   0   0   0   0   0    0    0
%e A366768   12 | 1  2  2   2   2   2   2   2   2   2    2    2
%e A366768   13 | 1  8 30  68 126 180 286 348 510 572  798  852
%e A366768   14 | 1 10 46 106 190 298 430 586 766 970 1198 1450
%e A366768   15 | 1  0  0   0   0   0   0   0   0   0    0    0
%e A366768   16 | 1  4  8  12  16  20  24  28  32  36   40   44
%e A366768   17 | 1  8 30  68 126 180 286 348 510 572  798  852
%e A366768   18 | 1 12 50 110 194 302 434 590 770 974 1202 1454
%Y A366768 Cf. A366766, A366767.
%K A366768 nonn,tabl
%O A366768 1,5
%A A366768 _Pontus von Brömssen_, Oct 22 2023