This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366775 #20 Nov 18 2023 08:36:28 %S A366775 1,1,2,5,15,52,203,877,4140,21146,115938,677765,4200011,27446229, %T A366775 188255890,1349652560,10075332564,78052115894,625568350179, %U A366775 5173033558415,44028767332852,384857341649657 %N A366775 Number of 2-distant 4-noncrossing partitions of {1,...,n}. %C A366775 a(n+1) is the binomial transform of A108305. %D A366775 Juan B. Gil and Jordan O. Tirrell, A simple bijection for enhanced, classical, and 2-distant k-noncrossing partitions, Discrete Math. 343 (2020), no. 6, 111705, 5 pp. %H A366775 Juan B. Gil and Jordan O. Tirrell, <a href="https://arxiv.org/abs/1806.09065">A simple bijection for enhanced, classical, and 2-distant k-noncrossing partitions</a>, arXiv:1806.09065 [math.CO], 2018-2023. %F A366775 a(n+1) = Sum_{i=0..n} binomial(n,i)*A108305(i). %e A366775 There are 21147 partitions of 9 elements, but a(9)=21146 because the partition (1,6)(2,7)(3,8)(4,9)(5) has a 2-distant 4-crossing. %Y A366775 Cf. A108305, A366774, A366776. %K A366775 nonn,more %O A366775 0,3 %A A366775 _Juan B. Gil_, Nov 13 2023