A366807 a(n) = A020639(A120944(n))*A120944(n).
12, 20, 28, 45, 63, 44, 52, 60, 99, 68, 175, 76, 117, 84, 92, 153, 275, 171, 116, 124, 325, 132, 207, 140, 148, 539, 156, 164, 425, 172, 261, 637, 279, 188, 475, 204, 315, 212, 220, 333, 228, 575, 236, 833, 244, 369, 387, 260, 931, 268, 276, 423, 284, 1573, 725
Offset: 1
Examples
Let b(n) = A120944(n). a(1) = 12 = 2^2*3^1 = b(1)*lpf(b(1)) = 6*lpf(6) = 6*2. In {6*A003586}, 12 is the second term. a(2) = 20 = 2^2*5^1 = b(2)*lpf(b(2)) = 10*lpf(10) = 10*2. In {10*A003592}, 20 is the second term. a(4) = 45 = 3^2*5^1 = b(4)*lpf(b(4)) = 15*lpf(15) = 15*3. In {15*A003593}, 45 is the second term, etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
nn = 150; s = Select[Range[nn], And[SquareFreeQ[#], CompositeQ[#]] &]; Array[#*FactorInteger[#][[1, 1]] &[s[[#]]] &, Length[s]]
-
Python
from math import isqrt from sympy import primepi, mobius, primefactors def A366807(n): def f(x): return n+1+primepi(x)+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) m, k = n+1, f(n+1) while m != k: m, k = k, f(k) return m*min(primefactors(m)) # Chai Wah Wu, Aug 02 2024
Comments