cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366815 Hyper-Wiener index in diamond nanowires obtained by connecting n unit cells in a sequence.

This page as a plain text file.
%I A366815 #32 Feb 27 2024 09:41:56
%S A366815 448,3544,14294,40420,92348,183208,328834,547764,861240,1293208,
%T A366815 1870318,2621924,3580084,4779560,6257818,8055028,10214064,12780504,
%U A366815 15802630,19331428,23420588,28126504,33508274,39627700,46549288,54340248,63070494,72812644
%N A366815 Hyper-Wiener index in diamond nanowires obtained by connecting n unit cells in a sequence.
%H A366815 Paolo Xausa, <a href="/A366815/b366815.txt">Table of n, a(n) for n = 1..10000</a>
%H A366815 Benedek Nagy, <a href="https://doi.org/10.1002/qua.27258">The hyper-Wiener Index of diamond nanowires</a>, International Journal of Quantum Chemistry, e27258, 2024.
%H A366815 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hyper-Wiener_index">Hyper-Wiener index</a>.
%H A366815 Wikipedia, <a href="https://en.wikipedia.org/wiki/Diamond_cubic">Diamond cubic</a>.
%H A366815 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F A366815 a(n) = (338*n^4 + 481*n^3 + 145*n^2 + 416*n - 36)/3.
%F A366815 G.f.: 2*x*(224 + 652*x + 527*x^2 - 45*x^3 - 6*x^4)/(1 - x)^5. - _Stefano Spezia_, Oct 24 2023
%t A366815 LinearRecurrence[{5, -10, 10, -5, 1}, {448, 3544, 14294, 40420, 92348},50] (* _Paolo Xausa_, Feb 27 2024 *)
%o A366815 (PARI) a(n) = (338*n^4 + 481*n^3 + 145*n^2 + 416*n - 36)/3
%o A366815 (Magma) [(338*n^4 + 481*n^3 + 145*n^2 + 416*n - 36)/3 : n in [1..50]]; // _Wesley Ivan Hurt_, Dec 10 2023
%Y A366815 Cf. A366816.
%K A366815 nonn,easy
%O A366815 1,1
%A A366815 _Benedek Nagy_, Oct 24 2023