A366816 Wiener index in diamond nanowires obtained by connecting n unit cells in a sequence.
232, 1296, 3868, 8624, 16240, 27392, 42756, 63008, 88824, 120880, 159852, 206416, 261248, 325024, 398420, 482112, 576776, 683088, 801724, 933360, 1078672, 1238336, 1413028, 1603424, 1810200, 2034032, 2275596, 2535568, 2814624, 3113440, 3432692, 3773056
Offset: 1
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Benedek Nagy, The hyper-Wiener Index of diamond nanowires, International Journal of Quantum Chemistry, e27258, 2023.
- Eric Weisstein's World of Mathematics, Wiener Index
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A366815.
Programs
-
Mathematica
A366816[n_] := 2/3*((13*n + 9)*13*n + 62)*n; Array[A366816, 50] (* or *) LinearRecurrence[{4, -6, 4, -1}, {232, 1296, 3868, 8624}, 50] (* Paolo Xausa, Oct 01 2024 *)
Formula
a(n) = (338*n^3 + 234*n^2 + 124*n)/3.