cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366825 Numbers of the form p^2 * m, squarefree m > 1, prime p < lpf(m), where lpf(m) = A020639(m).

Original entry on oeis.org

12, 20, 28, 44, 45, 52, 60, 63, 68, 76, 84, 92, 99, 116, 117, 124, 132, 140, 148, 153, 156, 164, 171, 172, 175, 188, 204, 207, 212, 220, 228, 236, 244, 260, 261, 268, 275, 276, 279, 284, 292, 308, 315, 316, 325, 332, 333, 340, 348, 356, 364, 369, 372, 380, 387
Offset: 1

Views

Author

Michael De Vlieger, Dec 15 2023

Keywords

Comments

Proper subset of A126706. Proper subset of A364996.
Prime signature of a(n) is 2 followed by at least one 1.
Numbers of the form A065642(A120944(k)) for some k.
The asymptotic density of this sequence is (6/Pi^2) * Sum_{p prime} (1/p^2) * (Product_{primes q <= p} (q/(q+1))) = 0.155068688392... . - Amiram Eldar, Dec 18 2023

Examples

			a(1) = 12 = 4*3 = p^2 * m, squarefree m > 1; sqrt(4) < lpf(3), i.e., 2 < 3.
a(5) = 45 = 9*5 = p^2 * m, squarefree m > 1; sqrt(9) < lpf(5), i.e., 3 < 5.
Prime powers p^k, k > 2, are not in the sequence since m = p^(k-2) is not squarefree and p = lpf(m).
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[500], PrimeOmega[#] > PrimeNu[#] > 1 &], First[#1] == 2 && Union[#2] == {1} & @@ TakeDrop[FactorInteger[#][[All, -1]], 1] &]
  • PARI
    is(n) = {my(e = factor(n)[, 2]); #e > 1 && e[1] == 2 && vecmax(e[2..#e]) == 1;} \\ Amiram Eldar, Dec 18 2023