A366825 Numbers of the form p^2 * m, squarefree m > 1, prime p < lpf(m), where lpf(m) = A020639(m).
12, 20, 28, 44, 45, 52, 60, 63, 68, 76, 84, 92, 99, 116, 117, 124, 132, 140, 148, 153, 156, 164, 171, 172, 175, 188, 204, 207, 212, 220, 228, 236, 244, 260, 261, 268, 275, 276, 279, 284, 292, 308, 315, 316, 325, 332, 333, 340, 348, 356, 364, 369, 372, 380, 387
Offset: 1
Examples
a(1) = 12 = 4*3 = p^2 * m, squarefree m > 1; sqrt(4) < lpf(3), i.e., 2 < 3. a(5) = 45 = 9*5 = p^2 * m, squarefree m > 1; sqrt(9) < lpf(5), i.e., 3 < 5. Prime powers p^k, k > 2, are not in the sequence since m = p^(k-2) is not squarefree and p = lpf(m).
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Select[Range[500], PrimeOmega[#] > PrimeNu[#] > 1 &], First[#1] == 2 && Union[#2] == {1} & @@ TakeDrop[FactorInteger[#][[All, -1]], 1] &]
-
PARI
is(n) = {my(e = factor(n)[, 2]); #e > 1 && e[1] == 2 && vecmax(e[2..#e]) == 1;} \\ Amiram Eldar, Dec 18 2023
Comments