cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A366827 -a(n)/7! is the coefficient of x^7 in the Taylor expansion of the k-th iteration of sin(x).

Original entry on oeis.org

0, 1, 128, 731, 2160, 4765, 8896, 14903, 23136, 33945, 47680, 64691, 85328, 109941, 138880, 172495, 211136, 255153, 304896, 360715, 422960, 491981, 568128, 651751, 743200, 842825, 950976, 1068003, 1194256, 1330085, 1475840, 1631871, 1798528, 1976161, 2165120, 2365755, 2578416
Offset: 0

Views

Author

Jianing Song, Oct 25 2023

Keywords

Comments

a(n)/7! is the coefficient of x^7 in the Taylor expansion of the k-th iteration of sinh(x). This is most easily seen from the relation -i*sin(...sin(sin(sin(i*x)))...) = -i*sin(...sin(sin(i*sinh(x)))...) = -i*sin(...sin(i*sinh(sinh(x)))...) = ... = sinh(...sinh(sinh(sinh(x)))...).

Examples

			sin(sin(x)) = x - 2*x^3/3! + 12*x^5/5! - 128*x^7/7! + ...;
sin(sin(sin(x))) = x - 3*x^3/3! + 33*x^5/5! - 731*x^7/7! + ...;
sin(sin(sin(sin(x)))) = x - 4*x^3/3! + 64*x^5/5! - 2160*x^7/7! + ....
		

Crossrefs

Cf. A366834 (main sequence), A051624 (coefficient of x^5), A285018, A285019.

Programs

  • PARI
    a(n) = (175/3)*n^3 - 112*n^2 + (164/3)*n

Formula

a(n) = binomial(n,1) + 126*binomial(n,2) + 350*binomial(n,3) = (175*n^2 - 336*n + 164)*n/3. See A366834.
G.f.: x/(1-x)^2 + 126*x^2/(1-x)^3 + 350*x^3/(1-x)^4.
Showing 1-1 of 1 results.