This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366842 #10 Oct 28 2023 23:53:01 %S A366842 0,0,0,1,0,2,1,4,1,8,3,13,6,21,10,36,15,53,28,80,41,122,63,174,97,250, %T A366842 140,359,201,496,299,685,410,949,575,1284,804,1726,1093,2327,1482, %U A366842 3076,2023,4060,2684,5358,3572,6970,4745,9050,6221,11734,8115,15060,10609 %N A366842 Number of integer partitions of n whose odd parts have a common divisor > 1. %e A366842 The a(3) = 1 through a(11) = 13 partitions: %e A366842 (3) . (5) (3,3) (7) (3,3,2) (9) (5,5) (11) %e A366842 (3,2) (4,3) (5,4) (4,3,3) (6,5) %e A366842 (5,2) (6,3) (3,3,2,2) (7,4) %e A366842 (3,2,2) (7,2) (8,3) %e A366842 (3,3,3) (9,2) %e A366842 (4,3,2) (4,4,3) %e A366842 (5,2,2) (5,4,2) %e A366842 (3,2,2,2) (6,3,2) %e A366842 (7,2,2) %e A366842 (3,3,3,2) %e A366842 (4,3,2,2) %e A366842 (5,2,2,2) %e A366842 (3,2,2,2,2) %t A366842 Table[Length[Select[IntegerPartitions[n], GCD@@Select[#,OddQ]>1&]], {n,0,30}] %o A366842 (Python) %o A366842 from math import gcd %o A366842 from sympy.utilities.iterables import partitions %o A366842 def A366842(n): return sum(1 for p in partitions(n) if gcd(*(q for q in p if q&1))>1) # _Chai Wah Wu_, Oct 28 2023 %Y A366842 This is the odd case of A018783, complement A000837. %Y A366842 The even version is A047967. %Y A366842 The complement is counted by A366850, ranks A366846. %Y A366842 A000041 counts integer partitions, strict A000009. %Y A366842 A000740 counts relatively prime compositions. %Y A366842 A113685 counts partitions by sum of odds, stat A366528, w/o zeros A365067. %Y A366842 A168532 counts partitions by gcd. %Y A366842 A239261 counts partitions with (sum of odd parts) = (sum of even parts). %Y A366842 A289508 gives gcd of prime indices, positions of ones A289509. %Y A366842 Cf. A007359, A051424, A055922, A066208, A078374, A087436, A116598, A337485, A366843, A366844, A366845. %K A366842 nonn %O A366842 0,6 %A A366842 _Gus Wiseman_, Oct 28 2023