This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366843 #10 Oct 31 2023 04:34:58 %S A366843 1,1,1,1,2,2,3,4,6,6,9,11,13,17,21,23,32,37,42,53,62,70,88,103,116, %T A366843 139,164,184,220,255,283,339,390,435,511,578,653,759,863,963,1107, %U A366843 1259,1401,1609,1814,2015,2303,2589,2878,3259,3648,4058,4580,5119,5672,6364 %N A366843 Number of integer partitions of n into odd, relatively prime parts. %e A366843 The a(1) = 1 through a(8) = 6 partitions: %e A366843 (1) (11) (111) (31) (311) (51) (331) (53) %e A366843 (1111) (11111) (3111) (511) (71) %e A366843 (111111) (31111) (3311) %e A366843 (1111111) (5111) %e A366843 (311111) %e A366843 (11111111) %t A366843 Table[Length[Select[IntegerPartitions[n],#=={}||And@@OddQ/@#&&GCD@@#==1&]],{n,0,30}] %o A366843 (Python) %o A366843 from math import gcd %o A366843 from sympy.utilities.iterables import partitions %o A366843 def A366843(n): return sum(1 for p in partitions(n) if all(d&1 for d in p) and gcd(*p)==1) # _Chai Wah Wu_, Oct 30 2023 %Y A366843 Allowing even parts gives A000837. %Y A366843 The strict case is A366844, with evens A078374. %Y A366843 The complement is counted by A366852, with evens A018783. %Y A366843 The pairwise coprime version is A366853, with evens A051424. %Y A366843 A000041 counts integer partitions, strict A000009 (also into odds). %Y A366843 A000740 counts relatively prime compositions. %Y A366843 A168532 counts partitions by gcd. %Y A366843 A366842 counts partitions whose odd parts have a common divisor > 1. %Y A366843 Cf. A007359, A047967, A055922, A066208, A113685, A116598, A289509, A289508, A302697, A337485, A366845, A366848, A366849. %K A366843 nonn %O A366843 0,5 %A A366843 _Gus Wiseman_, Oct 28 2023