This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366845 #7 Oct 30 2023 11:06:20 %S A366845 0,0,1,1,2,3,5,7,11,15,23,31,43,58,82,107,144,189,250,323,420,537,695, %T A366845 880,1114,1404,1774,2210,2759,3423,4239,5223,6430,7869,9640,11738, %U A366845 14266,17297,20950,25256,30423,36545,43824,52421,62620,74599,88802,105431 %N A366845 Number of integer partitions of n that contain at least one even part and whose halved even parts are relatively prime. %e A366845 The partition y = (6,4) has halved even parts (3,2) which are relatively prime, so y is counted under a(10). %e A366845 The a(2) = 1 through a(9) = 15 partitions: %e A366845 (2) (21) (22) (32) (42) (52) (62) (72) %e A366845 (211) (221) (222) (322) (332) (432) %e A366845 (2111) (321) (421) (422) (522) %e A366845 (2211) (2221) (521) (621) %e A366845 (21111) (3211) (2222) (3222) %e A366845 (22111) (3221) (3321) %e A366845 (211111) (4211) (4221) %e A366845 (22211) (5211) %e A366845 (32111) (22221) %e A366845 (221111) (32211) %e A366845 (2111111) (42111) %e A366845 (222111) %e A366845 (321111) %e A366845 (2211111) %e A366845 (21111111) %t A366845 Table[Length[Select[IntegerPartitions[n], GCD@@Select[#,EvenQ]/2==1&]],{n,0,30}] %Y A366845 For all parts we have A000837, complement A018783. %Y A366845 These partitions have ranks A366847. %Y A366845 For odd parts we have A366850, ranks A366846, complement A366842. %Y A366845 A000041 counts integer partitions, strict A000009, complement A047967. %Y A366845 A035363 counts partitions into all even parts, ranks A066207. %Y A366845 A078374 counts relatively prime strict partitions. %Y A366845 A168532 counts partitions by gcd. %Y A366845 A239261 counts partitions with (sum of odd parts) = (sum of even parts). %Y A366845 A366531 = 2*A366533 adds up even prime indices, triangle A113686/A174713. %Y A366845 Cf. A051424, A113685, A116598, A258117, A289509, A366843, A366849. %K A366845 nonn %O A366845 0,5 %A A366845 _Gus Wiseman_, Oct 28 2023