This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366847 #7 Nov 01 2023 10:01:09 %S A366847 3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72, %T A366847 75,78,81,84,87,90,91,93,96,99,102,105,108,111,114,117,120,123,126, %U A366847 129,132,135,138,141,144,147,150,153,156,159,162,165,168,171,174 %N A366847 Numbers whose halved even prime indices are nonempty and relatively prime. %C A366847 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A366847 Consists of powers of 2 times elements of the odd restriction A366849. %e A366847 The even prime indices of 91 are {4,6}, halved {2,3}, which are relatively prime, so 91 is in the sequence. %e A366847 The prime indices of 665 are {3,4,8}, even {4,8}, halved {2,4}, which are not relatively prime, so 665 is not in the sequence. %e A366847 The terms together with their prime indices begin: %e A366847 3: {2} %e A366847 6: {1,2} %e A366847 9: {2,2} %e A366847 12: {1,1,2} %e A366847 15: {2,3} %e A366847 18: {1,2,2} %e A366847 21: {2,4} %e A366847 24: {1,1,1,2} %e A366847 27: {2,2,2} %e A366847 30: {1,2,3} %e A366847 33: {2,5} %e A366847 36: {1,1,2,2} %e A366847 39: {2,6} %e A366847 42: {1,2,4} %e A366847 45: {2,2,3} %e A366847 48: {1,1,1,1,2} %t A366847 Select[Range[100],GCD@@Select[PrimePi/@First/@FactorInteger[#],EvenQ]/2==1&] %Y A366847 Including odd indices gives A289509, ones of A289508, counted by A000837. %Y A366847 The complement including odd indices is A318978, counted by A018783. %Y A366847 The partitions with these ranks are counted by A366845. %Y A366847 A version for odd indices A366846, counted by A366850. %Y A366847 The odd restriction is A366849. %Y A366847 A000041 counts integer partitions, strict A000009 (also into odds). %Y A366847 A035363 counts partitions into all even parts, ranks A066207. %Y A366847 A112798 lists prime indices, length A001222, sum A056239. %Y A366847 A162641 counts even prime exponents, odd A162642. %Y A366847 A257992 counts even prime indices, odd A257991. %Y A366847 A366528 adds up odd prime indices, partition triangle A113685. %Y A366847 A366531 = 2*A366533 adds up even prime indices, triangle A113686/A174713. %Y A366847 Cf. A000720, A055396, A061395, A066208, A168532, A302696, A302697, A325698, A366842, A366843, A366844, A366848. %K A366847 nonn %O A366847 1,1 %A A366847 _Gus Wiseman_, Oct 31 2023