This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366850 #6 Oct 30 2023 11:06:31 %S A366850 0,1,1,2,3,5,7,11,16,22,32,43,60,80,110,140,194,244,327,410,544,670, %T A366850 883,1081,1401,1708,2195,2651,3382,4069,5129,6157,7708,9194,11438, %U A366850 13599,16788,19911,24432,28858,35229,41507,50359,59201,71489,83776,100731,117784 %N A366850 Number of integer partitions of n whose odd parts are relatively prime. %e A366850 The a(1) = 1 through a(8) = 16 partitions: %e A366850 (1) (11) (21) (31) (41) (51) (61) (53) %e A366850 (111) (211) (221) (321) (331) (71) %e A366850 (1111) (311) (411) (421) (431) %e A366850 (2111) (2211) (511) (521) %e A366850 (11111) (3111) (2221) (611) %e A366850 (21111) (3211) (3221) %e A366850 (111111) (4111) (3311) %e A366850 (22111) (4211) %e A366850 (31111) (5111) %e A366850 (211111) (22211) %e A366850 (1111111) (32111) %e A366850 (41111) %e A366850 (221111) %e A366850 (311111) %e A366850 (2111111) %e A366850 (11111111) %t A366850 Table[Length[Select[IntegerPartitions[n],GCD@@Select[#,OddQ]==1&]],{n,0,30}] %Y A366850 For all parts (not just odd) we have A000837, complement A018783. %Y A366850 The complement is counted by A366842. %Y A366850 These partitions have ranks A366846. %Y A366850 A000041 counts integer partitions, strict A000009 (also into odds). %Y A366850 A000740 counts relatively prime compositions. %Y A366850 A078374 counts relatively prime strict partitions. %Y A366850 A113685 counts partitions by sum of odd parts, rank statistic A366528. %Y A366850 A168532 counts partitions by gcd. %Y A366850 A239261 counts partitions with (sum of odd parts) = (sum of even parts). %Y A366850 Cf. A007359, A047967, A051424, A066208, A116598, A365067, A366843, A366844, A366845, A366848. %K A366850 nonn %O A366850 0,4 %A A366850 _Gus Wiseman_, Oct 28 2023