cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366850 Number of integer partitions of n whose odd parts are relatively prime.

This page as a plain text file.
%I A366850 #6 Oct 30 2023 11:06:31
%S A366850 0,1,1,2,3,5,7,11,16,22,32,43,60,80,110,140,194,244,327,410,544,670,
%T A366850 883,1081,1401,1708,2195,2651,3382,4069,5129,6157,7708,9194,11438,
%U A366850 13599,16788,19911,24432,28858,35229,41507,50359,59201,71489,83776,100731,117784
%N A366850 Number of integer partitions of n whose odd parts are relatively prime.
%e A366850 The a(1) = 1 through a(8) = 16 partitions:
%e A366850   (1)  (11)  (21)   (31)    (41)     (51)      (61)       (53)
%e A366850              (111)  (211)   (221)    (321)     (331)      (71)
%e A366850                     (1111)  (311)    (411)     (421)      (431)
%e A366850                             (2111)   (2211)    (511)      (521)
%e A366850                             (11111)  (3111)    (2221)     (611)
%e A366850                                      (21111)   (3211)     (3221)
%e A366850                                      (111111)  (4111)     (3311)
%e A366850                                                (22111)    (4211)
%e A366850                                                (31111)    (5111)
%e A366850                                                (211111)   (22211)
%e A366850                                                (1111111)  (32111)
%e A366850                                                           (41111)
%e A366850                                                           (221111)
%e A366850                                                           (311111)
%e A366850                                                           (2111111)
%e A366850                                                           (11111111)
%t A366850 Table[Length[Select[IntegerPartitions[n],GCD@@Select[#,OddQ]==1&]],{n,0,30}]
%Y A366850 For all parts (not just odd) we have A000837, complement A018783.
%Y A366850 The complement is counted by A366842.
%Y A366850 These partitions have ranks A366846.
%Y A366850 A000041 counts integer partitions, strict A000009 (also into odds).
%Y A366850 A000740 counts relatively prime compositions.
%Y A366850 A078374 counts relatively prime strict partitions.
%Y A366850 A113685 counts partitions by sum of odd parts, rank statistic A366528.
%Y A366850 A168532 counts partitions by gcd.
%Y A366850 A239261 counts partitions with (sum of odd parts) = (sum of even parts).
%Y A366850 Cf. A007359, A047967, A051424, A066208, A116598, A365067, A366843, A366844, A366845, A366848.
%K A366850 nonn
%O A366850 0,4
%A A366850 _Gus Wiseman_, Oct 28 2023