A366851 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n such that the sum of primes indexed by all parts greater than one is k.
1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 2, 0, 2, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 2, 2, 2, 2, 1, 1, 0, 0, 1
Offset: 0
Examples
Triangle begins: 1 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 1 0 0 1 0 1 1 1 1 1 2 1 0 1 1 0 0 1 0 1 1 1 1 1 2 2 1 1 1 0 0 1 1 0 0 1 0 1 1 1 1 1 2 2 2 3 2 0 2 1 0 1 1 0 0 1 0 1 1 1 1 1 2 2 2 3 3 2 2 2 2 1 1 0 0 1 1 0 0 1 0 1 1 1 1 1 2 2 2 3 3 3 4 4 2 3 2 0 3 1 0 0 0 0 0 1 1 0 0 1 0 1 1 1 1 1 2 2 2 3 3 3 4 5 4 4 3 3 3 2 3 0 1 0 0 1 0 1 The T(8,13) = 3 partitions are: (6,1,1), (4,2,2), (3,3,2). The T(10,17) = 4 partitions are: (7,1,1,1), (5,2,2,1), (4,4,2), (4,3,3).
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], Total[Select[Prime/@#,OddQ]]==k&]], {n,0,10}, {k,0,If[n<=1,0,Prime[n]]}]
Comments