cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366853 Number of integer partitions of n into odd, pairwise coprime parts.

This page as a plain text file.
%I A366853 #7 Nov 02 2023 17:52:57
%S A366853 1,1,1,2,2,3,3,4,5,6,7,8,9,10,12,14,17,18,20,22,25,29,33,36,39,43,49,
%T A366853 55,61,66,69,75,85,94,104,113,120,129,143,159,172,183,193,207,226,251,
%U A366853 272,288,304,325,350,383,414,437,460,494,532,577,622,655,684
%N A366853 Number of integer partitions of n into odd, pairwise coprime parts.
%e A366853 The a(1) = 1 through a(10) = 7 partitions:
%e A366853 1  11  3    31    5      51      7        53        9          73
%e A366853        111  1111  311    3111    511      71        531        91
%e A366853                   11111  111111  31111    5111      711        5311
%e A366853                                  1111111  311111    51111      7111
%e A366853                                           11111111  3111111    511111
%e A366853                                                     111111111  31111111
%e A366853                                                                1111111111
%t A366853 pwcop[y_]:=And@@(GCD@@#==1&)/@Subsets[y,{2}]
%t A366853 Table[Length[Select[IntegerPartitions[n],And@@OddQ/@#&&pwcop[#]&]],{n,0,30}]
%Y A366853 Partitions into odd parts are counted by A000009, ranks A066208.
%Y A366853 Allowing even parts gives A051424.
%Y A366853 For relatively prime (not pairwise coprime): A366843, with evens A000837.
%Y A366853 A000041 counts integer partitions, strict A000009 (also into odds).
%Y A366853 A101268 counts pairwise coprime compositions.
%Y A366853 A168532 counts partitions by gcd.
%Y A366853 Cf. A007359, A018783, A055922, A078374, A337485, A366844, A366852.
%K A366853 nonn
%O A366853 0,4
%A A366853 _Gus Wiseman_, Nov 01 2023