This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366853 #7 Nov 02 2023 17:52:57 %S A366853 1,1,1,2,2,3,3,4,5,6,7,8,9,10,12,14,17,18,20,22,25,29,33,36,39,43,49, %T A366853 55,61,66,69,75,85,94,104,113,120,129,143,159,172,183,193,207,226,251, %U A366853 272,288,304,325,350,383,414,437,460,494,532,577,622,655,684 %N A366853 Number of integer partitions of n into odd, pairwise coprime parts. %e A366853 The a(1) = 1 through a(10) = 7 partitions: %e A366853 1 11 3 31 5 51 7 53 9 73 %e A366853 111 1111 311 3111 511 71 531 91 %e A366853 11111 111111 31111 5111 711 5311 %e A366853 1111111 311111 51111 7111 %e A366853 11111111 3111111 511111 %e A366853 111111111 31111111 %e A366853 1111111111 %t A366853 pwcop[y_]:=And@@(GCD@@#==1&)/@Subsets[y,{2}] %t A366853 Table[Length[Select[IntegerPartitions[n],And@@OddQ/@#&&pwcop[#]&]],{n,0,30}] %Y A366853 Partitions into odd parts are counted by A000009, ranks A066208. %Y A366853 Allowing even parts gives A051424. %Y A366853 For relatively prime (not pairwise coprime): A366843, with evens A000837. %Y A366853 A000041 counts integer partitions, strict A000009 (also into odds). %Y A366853 A101268 counts pairwise coprime compositions. %Y A366853 A168532 counts partitions by gcd. %Y A366853 Cf. A007359, A018783, A055922, A078374, A337485, A366844, A366852. %K A366853 nonn %O A366853 0,4 %A A366853 _Gus Wiseman_, Nov 01 2023