A366854 Powers k^m such that k is neither squarefree nor prime powers, and m > 1.
144, 324, 400, 576, 784, 1296, 1600, 1728, 1936, 2025, 2304, 2500, 2704, 2916, 3136, 3600, 3969, 4624, 5184, 5625, 5776, 5832, 6400, 7056, 7744, 8000, 8100, 8464, 9216, 9604, 9801, 10000, 10816, 11664, 12544, 13456, 13689, 13824, 14400, 15376, 15876, 17424, 18225
Offset: 1
Examples
Let b(n) = A126706(n). a(1) = b(1)^2 = 12^2 = 144. Since 144 = 2^4*3^2, it is both powerful and a perfect power. a(2) = b(2)^2 = 18^2 = 324. a(3) = b(3)^2 = 20^2 = 400. a(8) = b(1)^3 = 12^3 = 1728, etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
nn = 20000; i = 1; k = 2; MapIndexed[Set[S[First[#2]], #1] &, Select[Range@ Sqrt[nn], Nor[SquareFreeQ[#], PrimePowerQ[#]] &] ]; Union@ Reap[ While[j = 2; While[S[i]^j < nn, Sow[S[i]^j]; j++]; j > 2, k++; i++] ][[-1, 1]]
Comments