A366856 a(n) = number of partitions p of n such that (Ferrers conjugate of p) = contraconjugate of p.
1, 2, 3, 5, 7, 7, 8, 6, 10, 8, 8, 8, 8, 8, 8, 8, 8, 8, 12, 6, 10, 10, 8, 6, 6, 8, 12, 8, 12, 8, 10, 6, 8, 12, 10, 6, 10, 6, 8, 6, 8, 12, 8, 8, 8, 10, 8, 14, 14, 16, 12, 6, 8, 8, 10, 6, 12, 8, 8, 8
Offset: 1
Examples
The partitions of 6 in reverse lexicographic order: [6], [5,1], [4,2], [4,1,1], [3,3], [3,2,1], [3,1,1,1], [2,2,2], [2,2,1,1], [2,1,1,1,1], [1,1,1,1,1,1] Reversed (i.e., the contraconjugates of the partitions of 6, respectively):: [1,1,1,1,1,1], [2,1,1,1,1], [2,2,1,1], [2,2,2], [3,1,1,1], [3,2,1], [3,3], [4,1,1], [4,2], [5,1], [6] Ferrers conjugates: [1,1,1,1,1,1], [2,1,1,1,1], [2,2,1,1], [3,1,1,1], [2,2,2], [3,2,1], [4,1,1], [3,3], [4,2], [5,1], [6] Comparing the 2nd and 3rd lists shows that 11-4 = 7 partitions of 6 have identical Ferrers conjugate and contraconjugate, so that a(6) = 7.
Programs
-
Mathematica
c[n_] := PartitionsP[n] p[n_] := p[n] = IntegerPartitions[n]; r[n_] := r[n] = Reverse[p[n]] q1[u_] := q1[u] = Table[Count[#, _?(# >= i &)], {i, First[#]}] &[u]; (* q1[u]=conjugate of partition u *) q[n_] := q[n] = Table[q1[p[n][[k]]], {k, 1, c[n]}] s[n_] := s[n] = Select[Range[c[n]], r[n][[#]] == q[n][[#]] &] Table[Length[s[n]], {n, 1, 20}]
Comments