cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366867 Products of sexy prime triples: sphenic numbers with prime factorization (p - 6)*p*(p + 6).

This page as a plain text file.
%I A366867 #28 Sep 21 2024 13:38:33
%S A366867 935,1729,4301,11339,49321,102131,146969,298351,386389,1089019,
%T A366867 1221191,3864241,5171489,12640949,16965341,18181979,21243961,43974269,
%U A366867 51881689,178433279,208506509,223626691,230324329,270816731,278421569,393806449,849244031,932539661
%N A366867 Products of sexy prime triples: sphenic numbers with prime factorization (p - 6)*p*(p + 6).
%H A366867 Matthew Goers, <a href="/A366867/b366867.txt">Table of n, a(n) for n = 1..1000</a> [a(535) corrected by _Georg Fischer_, Sep 21 2024]
%F A366867 a(n) = (A006489(n) - 6)*A006489(n)*(A006489(n) + 6).
%e A366867 5, 11, and 17 are primes p, p+6, p+12, called a sexy prime triple. 5*11*17 = 935, so 935 is a term.
%e A366867 7, 13, and 19 are the second set of sexy prime triples. 7*13*19=1729, so 1729 is the second term.
%t A366867 (#*(#^2 - 36)) & /@ Select[Prime[Range[180]], PrimeQ[# - 6] && PrimeQ[# + 6] &] (* _Amiram Eldar_, Oct 27 2023 *)
%o A366867 (PARI) apply(x->x*(x-6)*(x+6), select(x->(isprime(x-6) && isprime(x) && isprime(x+6)), [1..1000])) \\ _Michel Marcus_, Oct 27 2023
%Y A366867 Cf. A006489, A111192. Subsequence of A007304.
%K A366867 nonn
%O A366867 1,1
%A A366867 _Matthew Goers_, Oct 25 2023