cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366900 a(n) is the number of real roots of the derivative of the cyclotomic polynomial Phi(n, 1/x).

This page as a plain text file.
%I A366900 #24 Dec 12 2023 10:31:45
%S A366900 0,0,1,0,1,1,1,0,1,1,1,2,1,1,3,0,1,1,1,2,3,1,1,2,1,1,1,2,1,3,1,0,3,1,
%T A366900 3,2,1,1,3,2,1,3,1,2,3,1,1,2,1,1,3,2,1,1,3,2,3,1,1,4,1,1,3,0,3,3,1,2,
%U A366900 3,3,1,2,1,1,3,2,3,3,1,2,1,1,1,4,3,1,3
%N A366900 a(n) is the number of real roots of the derivative of the cyclotomic polynomial Phi(n, 1/x).
%F A366900 For n = 2^m, a(n) = 0;
%F A366900 For odd n = p^m, a(n) = 1;
%F A366900 For odd n = p1^r1*p2^r2*...*pm^rm, a(n) = 2m-1;
%F A366900 For n = 2*p1^r1*p2^r2*...*pm^rm, a(n) = 2m-1 if p1, ..., pm are odd;
%F A366900 For n = 2^r*p1^r1*p2^r2*...*pm^rm, a(n) = 2m if p1, ..., pm are odd and r > 1.
%t A366900 c[n_, y_] := Limit[D[Cyclotomic[n, 1/x], x], x -> y]; Table[Length[Solve[c[n, x] == 0, x, Reals]], {n, 1, 128}]
%o A366900 (PARI) a(n)=my(v=valuation(n,2)); 2*omega(n>>v) - (v <= 1 && n > 2) \\ _Andrew Howroyd_, Oct 27 2023
%K A366900 nonn
%O A366900 1,12
%A A366900 _Gevorg Hmayakyan_, Oct 26 2023