This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366903 #7 Oct 28 2023 03:46:48 %S A366903 1,3,4,7,6,12,8,7,13,18,12,28,14,24,24,23,18,39,20,42,32,36,24,28,31, %T A366903 42,13,56,30,72,32,23,48,54,48,91,38,60,56,42,42,96,44,84,78,72,48,92, %U A366903 57,93,72,98,54,39,72,56,80,90,60,168,62,96,104,23,84,144,68 %N A366903 The sum of exponentially odious divisors of n. %C A366903 First differs from A353900 at n = 128. %C A366903 The number of these divisors is A366901(n) and the largest of them is A366905(n). %H A366903 Amiram Eldar, <a href="/A366903/b366903.txt">Table of n, a(n) for n = 1..10000</a> %F A366903 Multiplicative with a(p^e) = 1 + Sum_{k = 1..e, k is odious} p^k. %F A366903 a(n) <= A000203(n), with equality if and only if n is a cubefree number (A004709). %F A366903 Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1-1/p)*(1 + Sum_{k>=1} a(p^k)/p^(2*k)) = 0.721190607... . %t A366903 f[p_, e_] := 1 + Total[p^Select[Range[e], OddQ[DigitCount[#, 2, 1]] &]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A366903 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + sum(k = 1, f[i, 2], (hammingweight(k)%2) * f[i, 1]^k));} %Y A366903 Cf. A004709, A000203, A366901, A366905. %Y A366903 Similar sequences: A353900, A365682, A366904. %K A366903 nonn,easy,mult %O A366903 1,2 %A A366903 _Amiram Eldar_, Oct 27 2023