This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366905 #8 Oct 28 2023 03:47:59 %S A366905 1,2,3,4,5,6,7,4,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,12,25,26, %T A366905 9,28,29,30,31,16,33,34,35,36,37,38,39,20,41,42,43,44,45,46,47,48,49, %U A366905 50,51,52,53,18,55,28,57,58,59,60,61,62,63,16,65,66,67,68 %N A366905 The largest exponentially odious divisor of n. %C A366905 First differs from A353897 at n = 128. %C A366905 The largest divisor of n that is an exponentially odious number (A270428). %C A366905 The number of exponentially odious divisors of n is A366901(n) and their sum is A366903(n). %H A366905 Amiram Eldar, <a href="/A366905/b366905.txt">Table of n, a(n) for n = 1..10000</a> %F A366905 Multiplicative with a(p^e) = p^max{k=1..e, k odious}. %F A366905 a(n) <= n, with equality if and only if n is exponentially odious number (A270428). %F A366905 Sum_{k=1..n} a(k) ~ c*n^2, where c = (1/2) * Product_{p prime} (1 + Sum_{e>=1} (p^f(e) - p^(f(e-1)+1))/p^(2*e)) = 0.4636829525..., f(e) = max{k=1..e, k odious} for e >= 1, and f(0) = 0. %t A366905 maxOdious[e_] := Module[{k = e}, While[EvenQ[DigitCount[k, 2, 1]], k--]; k]; f[p_, e_] := p^maxOdious[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A366905 (PARI) s(n) = {my(k = n); while(!(hammingweight(k)%2), k--); k;} %o A366905 a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^s(f[i, 2]));} %Y A366905 Cf. A270428, A366901,A366903. %Y A366905 Similar sequences: A353897, A365683, A366906. %K A366905 nonn,easy,mult %O A366905 1,2 %A A366905 _Amiram Eldar_, Oct 27 2023