A366911 a(n) = (A364054(n+1) - A364054(n)) / prime(n) (where prime(n) denotes the n-th prime number).
1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -3, 2, -2, 1, -1, 1, -1, 2, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1
Offset: 1
Keywords
Examples
a(7) = (A364054(8) - A364054(7)) / prime(7) = (19 - 2) / 17 = 1.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..9999
- Rémy Sigrist, PARI program
Programs
-
Mathematica
nn = 2^16; c[] := False; m[] := 0; j = 1; c[0] = c[1] = True; Monitor[Do[p = Prime[n - 1]; r = Mod[j, p]; While[Set[k, p m[p] + r ]; c[k], m[p]++]; Set[{a[n - 1], c[k], j}, {(k - j)/p, True, k}], {n, 2, nn + 1}], n]; Array[a, nn] (* Michael De Vlieger, Oct 27 2023 *)
-
PARI
See Links section.
-
Python
from itertools import count, islice from sympy import nextprime def A366911_gen(): # generator of terms a, aset, p = 1, {0,1}, 2 while True: k, b = divmod(a,p) for i in count(-k): if b not in aset: aset.add(b) a, p = b, nextprime(p) yield i break b += p A366911_list = list(islice(A366911_gen(),30)) # Chai Wah Wu, Oct 27 2023
Comments