cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366911 a(n) = (A364054(n+1) - A364054(n)) / prime(n) (where prime(n) denotes the n-th prime number).

Original entry on oeis.org

1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -3, 2, -2, 1, -1, 1, -1, 2, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1
Offset: 1

Views

Author

Rémy Sigrist, Oct 27 2023

Keywords

Comments

a(n) is the number of steps of size prime(n) in going from A364054(n) to A364054(n+1).

Examples

			a(7) = (A364054(8) - A364054(7)) / prime(7) = (19 - 2) / 17 = 1.
		

Crossrefs

Cf. A160357, A364054, A366912 (partial sums).

Programs

  • Mathematica
    nn = 2^16; c[] := False; m[] := 0; j = 1; c[0] = c[1] = True;
      Monitor[Do[p = Prime[n - 1]; r = Mod[j, p];
        While[Set[k, p m[p] + r ]; c[k], m[p]++];
        Set[{a[n - 1], c[k], j}, {(k - j)/p, True, k}], {n, 2, nn + 1}], n];
    Array[a, nn] (* Michael De Vlieger, Oct 27 2023 *)
  • PARI
    See Links section.
    
  • Python
    from itertools import count, islice
    from sympy import nextprime
    def A366911_gen(): # generator of terms
        a, aset, p = 1, {0,1}, 2
        while True:
            k, b = divmod(a,p)
            for i in count(-k):
                if b not in aset:
                    aset.add(b)
                    a, p = b, nextprime(p)
                    yield i
                    break
                b += p
    A366911_list = list(islice(A366911_gen(),30)) # Chai Wah Wu, Oct 27 2023