This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366912 #10 Oct 27 2023 22:19:20 %S A366912 0,1,2,3,2,3,2,3,4,5,4,5,4,5,4,5,4,5,4,5,4,5,6,5,6,5,6,7,8,5,7,5,6,5, %T A366912 6,5,7,6,7,6,7,6,7,6,7,6,7,6,7,6,7,6,7,6,7,6,7,6,7,6,7,6,7,6,7,6,7,6, %U A366912 7,6,7,6,7,6,7,6,7,6,7,8,6,7,8,9,8,9,8 %N A366912 Partial sums of A366911: a(1) = 0, and for n > 0, a(n+1) = a(n) + A366911(n). %C A366912 By analogy with A064289, a(n) corresponds to the height of A364054(n) = number of addition steps - number of subtraction steps to produce it. %H A366912 Rémy Sigrist, <a href="/A366912/a366912.png">Colored scatterplot of the first 100000 terms of A364054</a> (where the color is function of a(n)) %H A366912 Rémy Sigrist, <a href="/A366912/a366912.gp.txt">PARI program</a> %F A366912 a(n) = Sum_{k = 1..n-1} A366911(k). %e A366912 a(5) = A366911(1) + A366911(2) + A366911(3) + A366911(4) = 1 + 1 + 1 - 1 = 2. %t A366912 nn = 2^16; c[_] := False; m[_] := 0; j = 1; s = b[1] = 0; %t A366912 c[0] = c[1] = True; %t A366912 Monitor[Do[p = Prime[n - 1]; r = Mod[j, p]; %t A366912 While[Set[k, p m[p] + r ]; c[k], m[p]++]; s += (k - j)/p; %t A366912 Set[{a[n - 1], b[n - 1], c[k], j}, {(k - j)/p, s, True, k}], %t A366912 {n, 2, nn + 1}], n]; %t A366912 Array[b, nn] (* _Michael De Vlieger_, Oct 27 2023 *) %o A366912 (PARI) See Links section. %o A366912 (Python) %o A366912 from itertools import count, islice %o A366912 from sympy import nextprime %o A366912 def A366912_gen(): # generator of terms %o A366912 a, aset, p, c = 1, {0,1}, 2, 0 %o A366912 while True: %o A366912 k, b = divmod(a,p) %o A366912 for i in count(-k): %o A366912 if b not in aset: %o A366912 aset.add(b) %o A366912 a, p = b, nextprime(p) %o A366912 yield c %o A366912 c += i %o A366912 break %o A366912 A366912_list = list(islice(A366912_gen(),30)) # _Chai Wah Wu_, Oct 27 2023 %Y A366912 Cf. A064289, A364054, A366911, A366913. %K A366912 nonn %O A366912 1,3 %A A366912 _Rémy Sigrist_, Oct 27 2023