cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366933 Expansion of Sum_{k>=1} k^4 * x^k/(1 - x^k)^4.

This page as a plain text file.
%I A366933 #8 Oct 29 2023 09:46:04
%S A366933 1,20,91,340,660,1836,2485,5560,7536,13280,14927,31360,29016,49924,
%T A366933 60390,89776,84490,152496,131651,226520,227066,299420,282141,514080,
%U A366933 415425,581776,614070,850864,711776,1226520,928977,1442400,1362042,1693064,1644930,2609076
%N A366933 Expansion of Sum_{k>=1} k^4 * x^k/(1 - x^k)^4.
%F A366933 a(n) = Sum_{d|n} d^4 * binomial(n/d+2,3).
%o A366933 (PARI) a(n) = sumdiv(n, d, d^4*binomial(n/d+2, 3));
%Y A366933 Cf. A064987, A366135, A366934.
%Y A366933 Cf. A059358, A343544.
%Y A366933 Cf. A343573.
%K A366933 nonn,easy
%O A366933 1,2
%A A366933 _Seiichi Manyama_, Oct 29 2023