A366940 a(n) is the number of positive squares with n digits, all distinct.
3, 6, 13, 36, 66, 96, 123, 97, 83, 87, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
a(1)=3 because all three 1-digit squares, 1, 4, and 9, have trivially distinct digits. a(2)=6 because all six 2-digit squares, 16, 25, 36, 49, 64, and 81, have distinct digits. 158407396 = 12586^2: has 9 distinct digits. Thus, this number contributes to a(9). On the other hand, 158382225 = 12585^2 has repeated digits. Thus, it doesn't contribute.
Links
- Index entries for linear recurrences with constant coefficients, signature (1).
Programs
-
Mathematica
Table[Length[Select[Range[100000], Length[Union[IntegerDigits[#^2]]] == k && Length[IntegerDigits[#^2]] == k &]], {k, 10}]
-
Python
from math import isqrt from itertools import permutations def sqr(n): return isqrt(n)**2 == n def a(n): if n > 10: return 0 return sum(1 for p in permutations("0123456789", n) if p[0] != '0' and sqr(int("".join(p)))) print([a(n) for n in range(1, 31)]) # Michael S. Branicky, Oct 29 2023
Comments