This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366977 #21 Oct 31 2023 03:32:56 %S A366977 1,1,3,1,4,5,1,5,8,8,1,6,12,15,10,1,7,17,26,21,14,1,8,23,42,42,33,16, %T A366977 1,9,30,64,78,73,41,20,1,10,38,93,135,149,102,56,23,1,11,47,130,220, %U A366977 282,234,152,69,27,1,12,57,176,341,500,493,379,204,87,29 %N A366977 Array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} binomial(floor(n/j)+k,k+1). %F A366977 T(n,k) = Sum_{j=1..n} binomial(j+k-1,k)*floor(n/j) = (Sum_{j=1..floor(sqrt(n))} [floor(n/j)*((k+1)*binomial(j+k-1,k)+binomial(floor(n/j)+k,k))] - floor(sqrt(n))^2*binomial(floor(sqrt(n))+k,k))/(k+1). %F A366977 G.f. of column k: (1/(1 - x)) * Sum_{j>=1} x^j/(1 - x^j)^(k+1). - _Seiichi Manyama_, Oct 30 2023 %e A366977 Array begins: %e A366977 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A366977 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ... %e A366977 5, 8, 12, 17, 23, 30, 38, 47, 57, 68, ... %e A366977 8, 15, 26, 42, 64, 93, 130, 176, 232, 299, ... %e A366977 10, 21, 42, 78, 135, 220, 341, 507, 728, 1015, ... %e A366977 14, 33, 73, 149, 282, 500, 839, 1344, 2070, 3083, ... %e A366977 16, 41, 102, 234, 493, 963, 1764, 3061, 5074, 8089, ... %o A366977 (Python) %o A366977 from math import isqrt, comb %o A366977 def A366977_T(n,k): return (-(s:=isqrt(n))**2*comb(s+k,k)+sum((q:=n//j)*((k+1)*comb(j+k-1,k)+comb(q+k,k)) for j in range(1,s+1)))//(k+1) %o A366977 def A366977_gen(): # generator of terms %o A366977 return (A366977_T(k+1, n-k-1) for n in count(1) for k in range(n)) %o A366977 A366977_list = list(islice(A366977_gen(),30)) %Y A366977 First superdiagonal is A366978. %Y A366977 Columns k=0..4 give A006218, A024916, A364970, A365409, A365439. %K A366977 nonn,tabl %O A366977 1,3 %A A366977 _Chai Wah Wu_, Oct 30 2023