cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366987 Triangle read by rows: T(n, k) = -(2^(n - k)*(-1)^n + 2^k + (-1)^k)/3.

This page as a plain text file.
%I A366987 #68 Nov 07 2023 08:23:10
%S A366987 -1,0,0,-2,-1,-2,2,1,-1,-2,-6,-3,-3,-3,-6,10,5,1,-1,-5,-10,-22,-11,-7,
%T A366987 -5,-7,-11,-22,42,21,9,3,-3,-9,-21,-42,-86,-43,-23,-13,-11,-13,-23,
%U A366987 -43,-86,170,85,41,19,5,-5,-19,-41,-85,-170,-342,-171,-87,-45,-27,-21,-27,-45,-87,-171,-342
%N A366987 Triangle read by rows: T(n, k) = -(2^(n - k)*(-1)^n + 2^k + (-1)^k)/3.
%H A366987 Paolo Xausa, <a href="/A366987/b366987.txt">Table of n, a(n) for n = 0..11475</a> (rows 0..150 of the triangle, flattened)
%F A366987 T(n, 0) = -((-2)^n + 2)/3.
%F A366987 T(n, k+1) - T(n, k) = T(n-1, k) + (-1)^k.
%F A366987 T(2*n+1, n) = A001045(n).
%F A366987 T(2*n+1, n+1) = -A001045(n).
%F A366987 T(2*n, n+1) = -A048573(n-1), for n > 0.
%F A366987 Note that the definition of T extends to negative parameters:
%F A366987 T(2*n-2, n-1) = -A001045(n).
%F A366987 -2^n*Sum_{k=0..n} (-1)^k*T(-n, -k) = A059570(n+1).
%F A366987 -4^n*Sum_{k=0..2*n} T(-2*n, -k) = A020989(n).
%F A366987 -Sum_{k=0..n} (-1)^k*T(n, k) = A077898(n). See also A053088.
%F A366987 Sum_{k = 0..2*n} |T(2*n, k)| = (4^(n+1) - 1)/3.
%F A366987 Sum_{k = 0..2*n+1} |T(2*n+1, k)| = (1 + (-1)^n - 2^(2 + n) + 2^(1 + 2*n))/3.
%F A366987 G.f.: (-1 - x + x*y)/((1 - x)*(1 + 2*x)*(1 + x*y)*(1 - 2*x*y)). - _Stefano Spezia_, Nov 03 2023
%e A366987 Triangle T(n, k) starts:
%e A366987    -1
%e A366987     0   0
%e A366987    -2  -1  -2
%e A366987     2   1  -1  -2
%e A366987    -6  -3  -3  -3  -6
%e A366987    10   5   1  -1  -5 -10
%e A366987   -22 -11  -7  -5  -7 -11 -22
%e A366987    42  21   9   3  -3  -9 -21 -42
%e A366987    ...
%e A366987 Note the symmetrical distribution of the absolute values of the terms in each row.
%p A366987 T := (n, k) -> -(2^(n-k)*(-1)^n + 2^k + (-1)^k)/3:
%p A366987 seq(seq(T(n, k), k = 0..n), n = 0..10);  # _Peter Luschny_, Nov 02 2023
%t A366987 A366987row[n_]:=Table[-(2^(n-k)(-1)^n+2^k+(-1)^k)/3,{k,0,n}];Array[A366987row,15,0] (* _Paolo Xausa_, Nov 07 2023 *)
%o A366987 (PARI) T(n, k) = (-2^(k+1) + 2*(-1)^(k+1) + (-1)^(n+1)*2^(1+n-k))/6 \\ _Thomas Scheuerle_, Nov 01 2023
%Y A366987 Rows sums: -A282577(n+2), if the conjectures from _Colin Barker_ in A282577 are true.
%Y A366987 First column: -(-1)^n * A078008(n).
%Y A366987 Second column: (-1)^n * A001045(n).
%Y A366987 Third column: -A140966(n).
%Y A366987 Fourth column: (-1)^n * A155980(n+2).
%Y A366987 Cf. A000079, A020989, A048573, A053088, A059570, A077898, A140966.
%K A366987 sign,tabl
%O A366987 0,4
%A A366987 _Paul Curtz_ and _Thomas Scheuerle_, Oct 31 2023
%E A366987 a(42) corrected by _Paolo Xausa_, Nov 07 2023