A366992 The sum of divisors of n that are not terms of A322448.
1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 15, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 47, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 60, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 47, 84, 144
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := 1 + p + Total[p^Select[Range[e], PrimeQ]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1] + sum(j = 1, f[i, 2], if(isprime(j), f[i, 1]^j)));}
Formula
Multiplicative with a(p^e) = 1 + p + Sum_{primes q <= e} p^q.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} f(1/p) = 0.77864544487983775708..., where f(x) = (1-x) * (1 + Sum_{k>=1} (1 + 1/x + Sum_{primes q <= k} 1/x^q) * x^(2*k)).
Comments