cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367045 G.f. satisfies A(x) = 1 - x^2 + x*A(x)^4.

This page as a plain text file.
%I A367045 #11 Nov 03 2023 11:20:08
%S A367045 1,1,3,18,112,755,5348,39302,296916,2291861,17997052,143319918,
%T A367045 1154728056,9395809374,77099733884,637298480966,5301568498768,
%U A367045 44351526986704,372890978840156,3149155955471690,26702387443603200,227238745573918511,1940201017862028108
%N A367045 G.f. satisfies A(x) = 1 - x^2 + x*A(x)^4.
%F A367045 a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(3*(n-2*k)+1,k) * binomial(4*(n-2*k),n-2*k)/(3*(n-2*k)+1).
%o A367045 (PARI) a(n) = sum(k=0, n\2, (-1)^k*binomial(3*(n-2*k)+1, k)*binomial(4*(n-2*k), n-2*k)/(3*(n-2*k)+1));
%Y A367045 Cf. A025262, A367044.
%Y A367045 Cf. A367041.
%K A367045 nonn
%O A367045 0,3
%A A367045 _Seiichi Manyama_, Nov 03 2023