This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367052 #35 Nov 18 2023 08:38:13 %S A367052 1,2,12,195,7971,754610,157474968,70513430631 %N A367052 Number of n X n matrices with elements {0, 1} whose characteristic polynomial has non-leading coefficients in {-1,0}. %C A367052 All of these matrices have the property that for m >= n, A^m = A^{m-i_1} + A^{m-i_2} + ... + A^{m-i_k} for some positive increasing sequence 0 < i_1 < i_2 < ... < i_k <= n. %C A367052 Because A003024(n) gives the number of such matrices with characteristic polynomial equal to x^n, a(n) >= A003024(n). %C A367052 Conjecture: The number of matrices with characteristic polynomial x^n - x^(n-1) is exactly n*A003024(n). (If so, (n+1)*A003024(n) is a lower bound for this sequence.) %H A367052 Wikipedia, <a href="https://en.wikipedia.org/wiki/Faddeev-LeVerrier_algorithm">Faddeev-LeVerrier algorithm</a> %H A367052 Wikipedia, <a href="https://en.wikipedia.org/wiki/Intrinsic_function#C_and_C++">Intrinsic Function</a> %e A367052 For n = 3, there are a(3) = 195 3 X 3 matrices whose non-leading coefficients are in {-1,0}, eight of which are shown below. %e A367052 [0 0 1] [0 0 1] [0 0 0] [0 1 0] %e A367052 [0 0 0] [1 0 0] [1 0 1] [1 0 1] %e A367052 [0 1 0], [0 1 0], [1 1 0], [1 0 0], %e A367052 . %e A367052 [1 0 0] [1 1 0] [1 1 0] [1 1 0] %e A367052 [1 0 0] [0 0 1] [1 0 0] [1 0 1] %e A367052 [1 1 0], [1 0 0], [1 1 0], and [1 0 0]. %e A367052 These have characteristic polynomials x^3, x^3 - 1, x^3 - x, x^3 - x - 1, x^3 - x^2, x^3 - x^2 - 1, x^3 - x^2 - x, and x^3 - x^2 - x - 1 respectively. %e A367052 There are 25, 2, 21, 6, 75, 6, 48, and 12 matrices with each of these characteristic polynomials respectively. %t A367052 IsValid[matrix_, n_] := AllTrue[ %t A367052 CoefficientList[(-1)^n*CharacteristicPolynomial[matrix, x], x][[;;-2]], %t A367052 -1 <= # <= 0 & %t A367052 ] %t A367052 a[0] := 1 %t A367052 a[n_] := Length[Select[Tuples[{0, 1}, {n, n}], IsValid[#, n] &]] %o A367052 (Python) %o A367052 from itertools import product %o A367052 from sympy import Matrix %o A367052 def A367052(n): return sum(1 for p in product((0,1),repeat=n**2) if all(d==0 or d==-1 for d in Matrix(n,n,p).charpoly().as_list()[1:])) if n else 1 # _Chai Wah Wu_, Nov 05 2023 %Y A367052 Cf. A003024, A272661, A367051. %K A367052 nonn,hard,more %O A367052 0,2 %A A367052 _Peter Kagey_, Nov 03 2023 %E A367052 a(5)-a(6), using the Faddeev-LeVerrier algorithm, from _Martin Ehrenstein_, Nov 06 2023 %E A367052 a(7), using AVX2 Intrinsics, from _Martin Ehrenstein_, Nov 18 2023