cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367053 Decimal expansion of Catalan's constant minus Serret's integral, A006752 - A102886.

Original entry on oeis.org

6, 4, 3, 7, 6, 7, 3, 3, 2, 8, 8, 9, 2, 6, 8, 7, 4, 8, 7, 4, 2, 0, 1, 7, 4, 0, 2, 6, 5, 2, 6, 8, 2, 3, 6, 7, 3, 5, 6, 8, 2, 6, 4, 1, 1, 7, 3, 5, 5, 1, 1, 3, 4, 7, 4, 7, 5, 7, 7, 3, 7, 1, 2, 9, 7, 2, 4, 7, 4, 4, 5, 1, 1, 2, 9, 1, 6, 2, 0, 2, 1, 1, 7, 5, 5, 6, 5
Offset: 0

Views

Author

Peter Luschny, Nov 03 2023

Keywords

Examples

			0.64376733288926874874201740265268236735682641173551134747577...
		

Crossrefs

Programs

  • Maple
    Im(polylog(2, (1 + I)/2)): evalf(%, 88);
  • Mathematica
    First[RealDigits[Catalan - Pi * Log[2] / 8, 10, 87]]
  • Python
    # Use a few guard digits when computing.
    # BBP formula (1 / 16) P(2, 16, 8, (8, 8, 4, 0, -2, -2, -1, 0))
    from decimal import Decimal as dec, getcontext
    def BBPCatSer(n: int) -> dec:
        getcontext().prec = n
        s = dec(0); f = dec(1); g = dec(16)
        for k in range(n):
            ek = dec(8 * k)
            s += f * ( dec(8) / (ek + 1) ** 2 + dec(8) / (ek + 2) ** 2
                     + dec(4) / (ek + 3) ** 2 - dec(2) / (ek + 5) ** 2
                     - dec(2) / (ek + 6) ** 2 - dec(1) / (ek + 7) ** 2 )
            f /= g
        return s / g
    print(BBPCatSer(200))

Formula

Equals Integral_{x=0..1} arctan(x)/(x*(1 + x)) dx.
Equals Im(Polylog(2, (1 + i)/2)).
Equals Catalan - Pi * log(2) / 8.
Equals (zeta(2, 1/4) - Pi * (Pi + log(2))) / 8.