This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367066 #25 Dec 16 2023 14:14:45 %S A367066 0,1,1,2,3,3,4,5,5,6,6,7,8,8,9,10,10,11,11,12,13,13,14,15,15,16,16,17, %T A367066 18,18,19,19,20,21,21,22,23,23,24,24,25,26,26,27,28,28,29,29,30,31,31, %U A367066 32,32,33,34,34,35,36,36,37,37,38,39,39,40,41,41,42,42,43 %N A367066 a(n) = ((Sum_{i=1..n} A367065(i))-2)/(n+2). %C A367066 For a positive integer k define the Avdispahić-Zejnulahi sequence AZ(k) by b(1)=k, and thereafter b(n) is the least positive integer not yet in the sequence such that Sum_{i=1..n} b(i) == k (mod n+k). Define the Avdispahić-Zejnulahi means sequence AZM(k) by a(n) = ((Sum_{i=1..n} b(i))-k)/(n+k). This is the AZM(2) sequence. %H A367066 Muharem Avdispahić and Faruk Zejnulahi, <a href="https://www.researchgate.net/publication/341726940_AN_INTEGER_SEQUENCE_WITH_A_DIVISIBILITY_PROPERTY">An integer sequence with a divisibility property</a>, Fibonacci Quarterly, Vol. 58:4 (2020), 321-333. %F A367066 Conjecture: a(n) = floor(n/phi + 1/phi^3) - [n+2 = Fibonacci(2*j+1) for some j], where phi = (1+sqrt(5))/2 and [] is the Iverson bracket. - _Jon E. Schoenfield_, Nov 03 2023 %t A367066 zlist={-1,2,4}; %t A367066 mlist={-1,0,1}; %t A367066 For[n=3,n<=101,n++,If[MemberQ[zlist,mlist[[n]]],AppendTo[mlist,mlist[[n]]+1]; %t A367066 AppendTo[zlist,mlist[[n+1]]+n+1];,AppendTo[mlist,mlist[[n]]];AppendTo[zlist,mlist[[n+1]]];];]; %t A367066 mlist=Drop[mlist,1];mlist %o A367066 (Python) %o A367066 z_list=[-1,2,4] %o A367066 m_list=[-1,0,1] %o A367066 n=2 %o A367066 for n in range(2, 100): %o A367066 if m_list[n] in z_list: %o A367066 m_list.append(m_list[n] + 1) %o A367066 z_list.append(m_list[n+1] + n+2) %o A367066 else: %o A367066 m_list.append(m_list[n]) %o A367066 z_list.append(m_list[n+1]) %o A367066 print(m_list[1:]) %Y A367066 Cf. A367065. %K A367066 nonn %O A367066 1,4 %A A367066 _Zenan Sabanac_, Nov 03 2023