This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367068 #16 Jan 30 2024 09:58:01 %S A367068 0,1,2,2,3,4,4,5,6,6,7,7,8,9,9,10,11,11,12,12,13,14,14,15,16,16,17,17, %T A367068 18,19,19,20,20,21,22,22,23,24,24,25,25,26,27,27,28,29,29,30,30,31,32, %U A367068 32,33,33,34,35,35,36,37,37,38,38,39,40,40,41,42,42 %N A367068 a(n) = ((Sum_{i=1..n} A340510(i))-1)/(n+1). %C A367068 For a positive integer k define the Avdispahić-Zejnulahi sequence AZ(k) by b(1)=k, and thereafter b(n) is the least positive integer not yet in the sequence such that Sum_{i=1..n} b(i) == k (mod n+k). %C A367068 Define the Avdispahić-Zejnulahi means sequence AZM(k) by a(n) = ((Sum_{i=1..n} b(i))-k)/(n+k). This is the AZM(1) sequence. %C A367068 Is this a duplicate of A005379? For n<=1300 at least a(n)=A005379(n). - _R. J. Mathar_, Jan 30 2024 %H A367068 Muharem Avdispahić and Faruk Zejnulahi, <a href="https://www.researchgate.net/publication/341726940_AN_INTEGER_SEQUENCE_WITH_A_DIVISIBILITY_PROPERTY">An integer sequence with a divisibility property</a>, Fibonacci Quarterly, Vol. 58:4 (2020), 321-333. %F A367068 For n>2, a(n) = a(n-1) if a(n-1) <> A340510(k) (for k=1..n-1) and a(n) = a(n-1)+1=A340510(n)-n otherwise. (See Proposition 3.1. of Avdispahić and Zejnulahi in the link above). %p A367068 A367068 := proc(n) %p A367068 add(A340510(i),i=1..n)-1 ; %p A367068 %/(n+1) ; %p A367068 end proc: %p A367068 seq(A367068(n),n=1..50) ; # _R. J. Mathar_, Jan 30 2024 %t A367068 zlist = {-1, 1, 3}; %t A367068 mlist = {-1, 0, 1}; %t A367068 For[n = 3, n <= 101, n++, %t A367068 If[MemberQ[zlist, mlist[[n]]], AppendTo[mlist, mlist[[n]] + 1]; %t A367068 AppendTo[zlist, mlist[[n + 1]] + n];, AppendTo[mlist, mlist[[n]]]; %t A367068 AppendTo[zlist, mlist[[n + 1]]];];]; %t A367068 mlist = Drop[mlist, 1]; mlist %o A367068 (Python) %o A367068 z_list=[-1, 1, 3] %o A367068 m_list=[-1, 0, 1] %o A367068 n=2 %o A367068 for n in range(2, 100): %o A367068 if m_list[n] in z_list: %o A367068 m_list.append(m_list[n] + 1) %o A367068 z_list.append(m_list[n+1] + n+1) %o A367068 else: %o A367068 m_list.append(m_list[n]) %o A367068 z_list.append(m_list[n+1]) %o A367068 print(m_list[1:]) %Y A367068 Cf. A340510. %Y A367068 Cf. A073869 (AZM(0)), A367066 (AZM(2)). %K A367068 nonn %O A367068 1,3 %A A367068 _Zenan Sabanac_, Dec 17 2023