This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367069 #18 Jan 22 2024 06:34:48 %S A367069 0,1,1,2,2,3,4,4,5,6,6,7,7,8,9,9,10,10,11,12,12,13,14,14,15,15,16,17, %T A367069 17,18,19,19,20,20,21,22,22,23,23,24,25,25,26,27,27,28,28,29,30,30,31, %U A367069 31,32,33,33,34,35,35,36,36,37,38,38,39,40,40,41,41,42 %N A367069 a(n) = ((Sum_{i=1..n} A367067(i))-3)/(n+3). %C A367069 For a positive integer k define the Avdispahić-Zejnulahi sequence AZ(k) by b(1)=k, and thereafter b(n) is the least positive integer not yet in the sequence such that Sum_{i=1..n} b(i) == k (mod n+k). Define the Avdispahić-Zejnulahi means sequence AZM(k) by a(n) = ((Sum_{i=1..n} b(i))-k)/(n+k). This is the AZM(3) sequence. %H A367069 Muharem Avdispahić and Faruk Zejnulahi, <a href="https://www.researchgate.net/publication/341726940_AN_INTEGER_SEQUENCE_WITH_A_DIVISIBILITY_PROPERTY">An integer sequence with a divisibility property</a>, Fibonacci Quarterly, Vol. 58:4 (2020), 321-333. %t A367069 zlist = {-1, 3, 5}; %t A367069 mlist = {-1, 0, 1}; %t A367069 For[n = 3, n <= 101, n++, %t A367069 If[MemberQ[zlist, mlist[[n]]], AppendTo[mlist, mlist[[n]] + 1]; %t A367069 AppendTo[zlist, mlist[[n + 1]] + n + 2];, %t A367069 AppendTo[mlist, mlist[[n]]]; AppendTo[zlist, mlist[[n + 1]]];];]; %t A367069 mlist = Drop[mlist, 1]; mlist %o A367069 (Python) %o A367069 z_list=[-1, 3, 5] %o A367069 m_list=[-1, 0, 1] %o A367069 n=2 %o A367069 for n in range(2, 100): %o A367069 if m_list[n] in z_list: %o A367069 m_list.append(m_list[n] + 1) %o A367069 z_list.append(m_list[n+1] + n+3) %o A367069 else: %o A367069 m_list.append(m_list[n]) %o A367069 z_list.append(m_list[n+1]) %o A367069 print(m_list[1:]) %Y A367069 Cf. A367067. %Y A367069 Cf. A073869 (AZM(0)), A367068 (AZM(1)), A367066 (AZM(2)). %K A367069 nonn %O A367069 1,4 %A A367069 _Zenan Sabanac_, Dec 17 2023