cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367091 Length of runs of consecutive numbers in A367090, i.e., size of gaps in the set of sums of distinct powers of 3 and distinct powers of 4.

Original entry on oeis.org

2, 2, 36, 36, 2, 2, 23, 2, 2, 36, 36, 2, 2, 23, 2, 2, 36, 2, 2, 36, 2, 2, 23, 2, 2, 36, 36, 2, 2, 23, 2, 2, 2, 2, 2, 2, 23, 2, 2, 36, 36, 2, 2, 23, 2, 2, 36, 2, 2, 14, 14, 2, 2, 36, 2, 2, 23, 2, 2, 36, 36, 2, 2, 23, 2, 2, 2, 2, 2, 2, 23, 2, 2, 36, 36, 2, 2, 23, 2, 2, 36, 2, 2, 36
Offset: 1

Views

Author

M. F. Hasler, Nov 08 2023

Keywords

Comments

The numbers that occur in this sequence are, in order of first appearance: 2, 36, 23, 14, 1081, 20, ... It is not known which numbers will eventually appear and which numbers will never occur in this sequence.
The first 1's (which correspond to isolated numbers in A367090, or gaps that are a singleton) appear as a(131) = a(132) = 1.
This set exhibits an interesting self-similar, pseudo-symmetric structure. This is due to the Proposition given in A367090.

Examples

			Sequence A367090 (= numbers that are not the sum of distinct powers of 3 or 4) starts (62, 63, 143, 144, 207, 208, 209, 210, ...), so the first two runs of consecutive terms are 2 = #{62, 63} and 2 = #{143, 144}, the next run is of length 36.
		

Crossrefs

Cf. A367090; A005836 and A000695 (sums of distinct powers of 3 resp. 4).

Programs

  • PARI
    D(v)=v[^1]-v[^-1] \\ first differences
    A367091_upto(N, DA=D(A367090_upto(N)))= D([ k | k<-[0..#DA], !k|| DA[k]-1 ])